Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Travel Med ; 28(4)2021 06 01.
Article in English | MEDLINE | ID: covidwho-1883023

ABSTRACT

RATIONALE FOR REVIEW: In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 µm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS: We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS: More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Diseases , Adolescent , Adult , Aged , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Child , Cities , Environmental Exposure/adverse effects , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis
2.
CMAJ ; 194(20): E693-E700, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1862287

ABSTRACT

BACKGROUND: The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system. METHODS: We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals' long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage. RESULTS: Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 µg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01-1.12), 1.09 (95% CI 0.98-1.21) and 1.00 (95% CI 0.90-1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06-1.23), 1.30 (95% CI 1.12-1.50) and 1.18 (95% CI 1.02-1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively. INTERPRETATION: Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Humans , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ontario/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies , SARS-CoV-2
3.
BMC Public Health ; 22(1): 998, 2022 May 17.
Article in English | MEDLINE | ID: covidwho-1846819

ABSTRACT

BACKGROUND: Meteorological factors and air pollutants have been reported to be associated with hand, foot, and mouth disease (HFMD) epidemics before the introduction of vaccine. However, there is limited evidence for studies with long-term dimensions. METHODS: We collected the daily HFMD counts, weather and air pollution data from 2014 to 2020 in Chengdu. Distributed lag non-linear models (DLNM) were used to assess the associations of meteorological factors and air pollutants on HFMD cases. RESULTS: From 2014-2020, high relative humidity and precipitation and extremely high and low levels of PM10, O3, SO2 and CO increased the risk of HFMD. In pre-vaccination period, extreme high and low temperatures, PM10 and NO2, low precipitation and high concentrations of PM2.5 and O3 significantly increase the risk of HFMD; In post-vaccination period, high relative humidity and low level of CO can significantly increase the incidence of HFMD; During the period of COVID-19, only low temperature will significantly increase the risk of HFMD; Low concentration of air pollutants has the greatest impact on the 6-14 age group, while the high concentration of air pollutants has the greatest impact on the 0-1 age group. CONCLUSIONS: Our study suggest that high relative humidity and precipitation and extremely high and low levels of PM10, O3, SO2 and CO increased the risk of HFMD from 2014 to 2020. The results of this study provide a reference for local authorities to formulate intervention measures and establish an environment-based disease early warning system.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Hand, Foot and Mouth Disease , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Hand, Foot and Mouth Disease/epidemiology , Humans , Incidence , Meteorological Concepts
4.
Int J Environ Res Public Health ; 19(6)2022 03 17.
Article in English | MEDLINE | ID: covidwho-1818109

ABSTRACT

BACKGROUND: Exposure to air pollution is associated with acute pediatric asthma exacerbations, including reduced lung function, rescue medication usage, and increased symptoms; however, most studies are limited in investigating longitudinal changes in these acute effects. This study aims to investigate the effects of daily air pollution exposure on acute pediatric asthma exacerbation risk using a repeated-measures design. METHODS: We conducted a panel study of 40 children aged 8-16 years with moderate-to-severe asthma. We deployed the Biomedical REAI-Time Health Evaluation (BREATHE) Kit developed in the Los Angeles PRISMS Center to continuously monitor personal exposure to particulate matter of aerodynamic diameter < 2.5 µm (PM2.5), relative humidity and temperature, geolocation (GPS), and asthma outcomes including lung function, medication use, and symptoms for 14 days. Hourly ambient (PM2.5, nitrogen dioxide (NO2), ozone (O3)) and traffic-related (nitrogen oxides (NOx) and PM2.5) air pollution exposures were modeled based on location. We used mixed-effects models to examine the association of same day and lagged (up to 2 days) exposures with daily changes in % predicted forced expiratory volume in 1 s (FEV1) and % predicted peak expiratory flow (PEF), count of rescue inhaler puffs, and symptoms. RESULTS: Participants were on average 12.0 years old (range: 8.4-16.8) with mean (SD) morning %predicted FEV1 of 67.9% (17.3%) and PEF of 69.1% (18.4%) and 1.4 (3.5) puffs per day of rescue inhaler use. Participants reported chest tightness, wheeze, trouble breathing, and cough symptoms on 36.4%, 17.5%, 32.3%, and 42.9%, respectively (n = 217 person-days). One SD increase in previous day O3 exposure was associated with reduced morning (beta [95% CI]: -4.11 [-6.86, -1.36]), evening (-2.65 [-5.19, -0.10]) and daily average %predicted FEV1 (-3.45 [-6.42, -0.47]). Daily (lag 0) exposure to traffic-related PM2.5 exposure was associated with reduced morning %predicted PEF (-3.97 [-7.69, -0.26]) and greater odds of "feeling scared of trouble breathing" symptom (odds ratio [95% CI]: 1.83 [1.03, 3.24]). Exposure to ambient O3, NOx, and NO was significantly associated with increased rescue inhaler use (rate ratio [95% CI]: O3 1.52 [1.02, 2.27], NOx 1.61 [1.23, 2.11], NO 1.80 [1.37, 2.35]). CONCLUSIONS: We found significant associations of air pollution exposure with lung function, rescue inhaler use, and "feeling scared of trouble breathing." Our study demonstrates the potential of informatics and wearable sensor technologies at collecting highly resolved, contextual, and personal exposure data for understanding acute pediatric asthma triggers.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Ozone , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/epidemiology , Child , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide , Ozone/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
6.
Int J Environ Res Public Health ; 19(8)2022 04 12.
Article in English | MEDLINE | ID: covidwho-1785703

ABSTRACT

Exposure to atmospheric particulate matter and nitrogen dioxide has been linked to SARS-CoV-2 infection and death. We hypothesized that long-term exposure to farming-related air pollutants might predispose to an increased risk of COVID-19-related death. To test this hypothesis, we performed an ecological study of five Italian Regions (Piedmont, Lombardy, Veneto, Emilia-Romagna and Sicily), linking all-cause mortality by province (administrative entities within regions) to data on atmospheric concentrations of particulate matter (PM2.5 and PM10) and ammonia (NH3), which are mainly produced by agricultural activities. The study outcome was change in all-cause mortality during March-April 2020 compared with March-April 2015-2019 (period). We estimated all-cause mortality rate ratios (MRRs) by multivariate negative binomial regression models adjusting for air temperature, humidity, international import-export, gross domestic product and population density. We documented a 6.9% excess in MRR (proxy for COVID-19 mortality) for each tonne/km2 increase in NH3 emissions, explained by the interaction of the period variable with NH3 exposure, considering all pollutants together. Despite the limitations of the ecological design of the study, following the precautionary principle, we recommend the implementation of public health measures to limit environmental NH3 exposure, particularly while the COVID-19 pandemic continues. Future studies are needed to investigate any causal link between COVID-19 and farming-related pollution.


Subject(s)
Agriculture , Air Pollutants , Air Pollution , COVID-19 , Particulate Matter , Agriculture/statistics & numerical data , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , COVID-19/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Epidemiologic Studies , Humans , Italy/epidemiology , Pandemics , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2 , Sicily/epidemiology
7.
Curr Environ Health Rep ; 9(2): 276-298, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1777889

ABSTRACT

PURPOSE OF REVIEW: The aim of this review is to summarize and provide clear insights into studies that evaluate the interaction between air pollution, climate, and health in North Africa. RECENT FINDINGS: Few studies have estimated the effects of climate and air pollution on health in North Africa. Most of the studies highlighted the evidence of the link between climate and air pollution as driving factors and increased mortality and morbidity as health outcomes. Each North African country prioritized research on a specific health factor. It was observed that the health outcome from each driving factor depends on the studied area and data availability. The latter is a major challenge in the region. As such, more studies should be led in the future to cover more areas in North Africa and when more data are available. Data availability will help to explore the applicability of different tools and techniques new to the region. This review explores studies related to climate and air pollution, and their possible impacts on health in North Africa. On one hand, air quality studies have focused mainly on particulate matter exceedance levels and their long-term exposure impacts, namely, morbidity and mortality. The observed differences between the various studies are mainly due to the used exposure-response function, the studied population, background emissions, and natural emission from the Sahara Desert that characterize the region. On the other hand, climate studies have focused primarily on the impact of heat waves, vector-borne disease, and mental disorders. More than half of these studies have been on leishmaniasis disease. The review revealed unbalanced and insufficient research on health impacts from air pollution episodes and climate extremes across the region.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Climate , Climate Change , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis
8.
Front Public Health ; 9: 735699, 2021.
Article in English | MEDLINE | ID: covidwho-1775876

ABSTRACT

Background: Fine particulate matter (PM2.5) is one of the most common outdoor air pollutants, and secondhand smoking (SHS) is an important source of inhalable indoor air pollution. Previous studies were controversial and inconsistent about PM2.5 and SHS air pollutants on neonatal birth weight outcomes, and no studies assessed the potential interactive effects between PM2.5 and SHS on birth weight outcomes. Purpose: To investigate the interaction between gestational PM2.5 and SHS air pollution exposure on the risk of macrosomia among pregnant women and examine the modifying effect of SHS exposure on the association of PM2.5 air pollution and birth weight outcomes during pregnancy. Methods: Research data were derived from the National Free Preconception Health Examination Project (NFPHEP), which lasted 3 years from January 1, 2010, to December 31, 2012. At least 240,000 Chinese women from 220 counties were enrolled in this project. PM2.5 exposure concentration was obtained using a hindcast model specific for historical PM2.5 estimation from satellite-retrieved aerosol optic depth. Different interaction models about air pollution exposure on birth weight outcomes were established, according to the adjustment of different confounding factors and different pregnancy stages. The establishment of interaction models was based on multivariable logistic regression, and the main confounding factors were maternal age at delivery and pre-pregnancy body mass index (BMI) of participants. SHS subgroups analysis was conducted to further confirm the results of interaction models. Results: In total, 197,877 participants were included in our study. In the full-adjusted interaction model, maternal exposure to PM2.5 was associated with an increased risk of macrosomia in whole, the first-, second-, and third trimesters of pregnancy (p < 0.001). The interactive effect was statistically significant between maternal exposure to PM2.5 and SHS on the risk of macrosomia in the whole (interaction p < 0.050) and the first-trimester pregnancy (interaction p < 0.050), not in the second (interaction p > 0.050) or third trimester (interaction p > 0.050) of pregnancy. The higher frequency of SHS exposure prompted the stronger interaction between the two air pollutants in the whole pregnancy and the first-trimester pregnancy. Conclusions: In the whole and first-trimester pregnancy, maternal exposure to SHS during pregnancy enhanced the risk of macrosomia among pregnant women exposed to PM2.5 air pollutants, and the interaction became stronger with the higher frequency of SHS exposure.


Subject(s)
Air Pollutants , Fetal Macrosomia , Particulate Matter , Prenatal Exposure Delayed Effects , Tobacco Smoke Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Female , Fetal Macrosomia/chemically induced , Fetal Macrosomia/etiology , Humans , Infant, Newborn , Particulate Matter/adverse effects , Particulate Matter/analysis , Pregnancy , Pregnant Women , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/analysis
10.
Pulmonology ; 28(4): 284-296, 2022.
Article in English | MEDLINE | ID: covidwho-1683552

ABSTRACT

OBJECTIVE: to summarize the main updated evidence about the health effects of air pollution and to focus on Italian epidemiological experiences on the respiratory effects. RESULTS: the recent literature indicates that there is strong evidence for causal relationships between PM2.5 air pollution exposure and all-cause mortality as well as mortality from acute lower respiratory infections, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lung cancer. A growing body of evidence also suggests causal relationships with type II diabetes and impacts on neonatal mortality from low birth weight and short gestation as well as neurologic effects in both children and adults. Italy, a Southern European country, faces a more threatening air pollution challenge because of the effects of both anthropogenic pollutants and natural dust (particulate matter, PM). The 2020 Report of the European Environment Agency highlighted the number of premature deaths in Italy attributable to main pollutants: 52,300 for PM2.5, 10,400 for NO2 and 3,000 for O3 in 2018. In Italy, original time series and analytical epidemiological studies showed increased cardio-respiratory hospital admissions and mortality and increased risk of respiratory diseases in people living in urban areas. CONCLUSIONS: adverse health effects of air pollutants, even at low levels, have been confirmed by recent epidemiological studies. Further studies should focus on the potential link between air pollution exposure and respiratory infections. This topic has become particularly important in the current SARS-COV-2 pandemic. Based on strong scientific evidence, the Italian government, which hosts the Global Alliance against Chronic Respiratory Diseases (GARD)-Italy at the Ministry of Health, the scientific respiratory societies and the patients' associations, as well as others in the health sector and civil society, must increase their engagement in advocacy for clean air policies, especially in light of the new Air Quality Guidelines of the World Health Organization.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Diabetes Mellitus, Type 2 , Respiration Disorders , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Child , Diabetes Mellitus, Type 2/chemically induced , Humans , Infant, Newborn , Italy/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2
11.
J Infect ; 84(5): 684-691, 2022 05.
Article in English | MEDLINE | ID: covidwho-1665190

ABSTRACT

OBJECTIVES: Previous studies have suggested a relationship between outdoor air pollution and the risk of coronavirus disease 2019 (COVID-19). However, there is a lack of data related to the severity of disease, especially in China. This study aimed to explore the association between short-term exposure to outdoor particulate matter (PM) and the risk of severe COVID-19. METHODS: We recruited patients diagnosed with COVID-19 during a recent large-scale outbreak in eastern China caused by the Delta variant. We collected data on meteorological factors and ambient air pollution during the same time period and in the same region where the cases occurred and applied a generalized additive model (GAM) to analyze the effects of short-term ambient PM exposure on the risk of severe COVID-19. RESULTS: A total of 476 adult patients with confirmed COVID-19 were recruited, of which 42 (8.82%) had severe disease. With a unit increase in PM10, the risk of severe COVID-19 increased by 81.70% (95% confidence interval [CI]: 35.45, 143.76) at a lag of 0-7 days, 86.04% (95% CI: 38.71, 149.53) at a lag of 0-14 days, 76.26% (95% CI: 33.68, 132.42) at a lag of 0-21 days, and 72.15% (95% CI: 21.02, 144.88) at a lag of 0-28 days. The associations remained significant at lags of 0-7 days, 0-14 days, and 0-28 days in the multipollutant models. With a unit increase in PM2.5, the risk of severe COVID-19 increased by 299.08% (95% CI: 92.94, 725.46) at a lag of 0-7 days, 289.23% (95% CI: 85.62, 716.20) at a lag of 0-14 days, 234.34% (95% CI: 63.81, 582.40) at a lag of 0-21 days, and 204.04% (95% CI: 39.28, 563.71) at a lag of 0-28 days. The associations were still significant at lags of 0-7 days, 0-14 days, and 0-28 days in the multipollutant models. CONCLUSIONS: Our results indicated that short-term exposure to outdoor PM was positively related to the risk of severe COVID-19, and that reducing air pollution may contribute to the control of COVID-19.


Subject(s)
Air Pollutants , COVID-19 , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , COVID-19/epidemiology , China/epidemiology , Humans , Particulate Matter/adverse effects , SARS-CoV-2
13.
Sci Rep ; 12(1): 1002, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639191

ABSTRACT

The costs of COVID-19 are extensive, and, like the fallout of most health and environmental crises in the US, there is growing evidence that these costs weigh disproportionately on communities of color. We investigated whether county-level racial composition and fine particulate pollution (PM2.5) are indicators for COVID-19 incidence and death rates in the state of Texas. Using county-level data, we ran linear regressions of percent minority as well as historic 2000-2016 PM2.5 levels against COVID-19 cases and deaths per capita. We found that a county's percent minority racial composition, defined as the percentage of population that identifies as Black or Hispanic, highly correlates with COVID-19 case and death rates. Using Value-of-Statistical-Life calculations, we found that economic costs from COVID-19 deaths fall more heavily on Black and Hispanic residents in Harris County, the most populous county in Texas. We found no consistent evidence or significant correlations between historic county-average PM2.5 concentration and COVID-19 incidence or death. Our findings suggest that public health and economic aid policy should consider the racially-segregated burden of disease to better mitigate costs and support equity for the duration and aftermath of health crises.


Subject(s)
Air Pollutants/adverse effects , COVID-19/mortality , Particulate Matter/adverse effects , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prognosis , Survival Rate , Texas/epidemiology , Young Adult
14.
Epidemiol Infect ; 150: e1, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1616902

ABSTRACT

This paper demonstrates how the combustion of fossil fuels for transport purpose might cause health implications. Based on an original case study [i.e. the Hubei province in China, the epicentre of the coronavirus disease-2019 (COVID-19) pandemic], we collected data on atmospheric pollutants (PM2.5, PM10 and CO2) and economic growth (GDP), along with daily series on COVID-19 indicators (cases, resuscitations and deaths). Then, we adopted an innovative Machine Learning approach, applying a new image Neural Networks model to investigate the causal relationships among economic, atmospheric and COVID-19 indicators. Empirical findings emphasise that any change in economic activity is found to substantially affect the dynamic levels of PM2.5, PM10 and CO2 which, in turn, generates significant variations in the spread of the COVID-19 epidemic and its associated lethality. As a robustness check, the conduction of an optimisation algorithm further corroborates previous results.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , COVID-19/mortality , Fossil Fuels/adverse effects , Gross Domestic Product/statistics & numerical data , Neural Networks, Computer , Carbon Dioxide/adverse effects , China/epidemiology , Economic Development/statistics & numerical data , Humans , Particulate Matter/adverse effects
15.
Environ Int ; 159: 107022, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1616484

ABSTRACT

BACKGROUND: Under-5 mortality rate is an important indicator in Millennium Development Goals and Sustainable Development Goals. To date, no nationally representative studies have examined the effects of fine particulate matter (PM2.5) air pollution on under-5 mortality. OBJECTIVE: To investigate the association of short-term exposure to PM2.5 with under-5 mortality from total and specific causes in China. METHODS: We used the national Maternal and Child Health Surveillance System to identify under-5 mortality cases during the study period of 2009 to 2019. We adopted a time-stratified case-crossover study design at the individual level to capture the effect of short-term exposure to daily PM2.5 on under-5 mortality, using conditional logistic regression models. RESULTS: A total of 61,464 under-5 mortality cases were included. A 10 µg/m3 increase in concentrations of PM2.5 on lag 0-1 d was significantly associated with a 1.15% (95%confidence interval: 0.65%, 1.65%) increase in under-5 mortality. Mortality from diarrhea, pneumonia, digestive diseases, and preterm birth were significantly associated with exposure to PM2.5. The effect estimates were larger for neonatal mortality (<28 days), female children, and in warm seasons. We observed steeper slopes in lower ranges (<50 µg/m3) of the concentration-response curve between PM2.5 and under-5 mortality, and positive associations remained below the 24-h PM2.5 concentration limit recommended by WHO Air Quality Guidelines and China Air Quality Standards. CONCLUSIONS: This nationwide case-crossover study in China demonstrated that acute exposure to PM2.5 may significantly increase the risk of under-5 mortality, with larger effects for neonates, female children, and during warm seasons. Relevant control strategies are needed to remove this roadblock to achieving under-5 mortality targets in developing countries.


Subject(s)
Air Pollutants , Air Pollution , Premature Birth , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Child, Preschool , China/epidemiology , Cross-Over Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Infant , Infant, Newborn , Mortality , Particulate Matter/adverse effects , Particulate Matter/analysis
16.
J Environ Manage ; 305: 114316, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1587287

ABSTRACT

The uneven geographical distribution of the novel coronavirus epidemic (COVID-19) in Italy is a puzzle given the intense flow of movements among the different geographical areas before lockdown decisions. To shed light on it, we test the effect of the quality of air (as measured by particulate matter and nitrogen dioxide) and lockdown restrictions on daily adverse COVID-19 outcomes during the first pandemic wave in the country. We find that air pollution is positively correlated with adverse outcomes of the pandemic, with lockdown being strongly significant and more effective in reducing deceases in more polluted areas. Results are robust to different methods including cross-section, pooled and fixed-effect panel regressions (controlling for spatial correlation), instrumental variable regressions, and difference-in-differences estimates of lockdown decisions through predicted counterfactual trends. They are consistent with the consolidated body of literature in previous medical studies suggesting that poor quality of air creates chronic exposure to adverse outcomes from respiratory diseases. The estimated correlation does not change when accounting for other factors such as temperature, commuting flows, quality of regional health systems, share of public transport users, population density, the presence of Chinese community, and proxies for industry breakdown such as the share of small (artisan) firms. Our findings provide suggestions for investigating uneven geographical distribution patterns in other countries, and have implications for environmental and lockdown policies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2
17.
Cad. Saúde Pública (Online) ; 37(9): e00242320, 2021. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1573779

ABSTRACT

On March 24, 2020, a partial lockdown was decreed in the state of São Paulo, Brazil, as a measure to hinder the spread of COVID-19, which consisted in prohibiting crowding and advising people to stay home, except for urgent or extremely necessary matters. Based on studies performed in other countries, this study aims to assess the impacts of the lockdown on the air quality of five cities in the state of São Paulo. Our study was conducted by using particulate matter and nitrogen dioxide as air quality indicators, and by correlating the contaminants concentrations with weather data. The results showed an increase in these contaminants in all cities within the first weeks after the lockdown compared with the weeks before the decree and with the same period in previous years. This result is inconsistent with the literature. Therefore, a secondary goal was set to investigate the possible cause (or causes) of such deterioration in air quality, which led to the increased number of wildfires. The anomalous dry weather favored the burning of vegetation in agricultural rural areas and in small, vegetated areas near the municipalities, and limited pollution scavenging by rainfall, both of which contributed to higher pollution concentration. We hypothesize the possible effects of worse air quality on the aggravation of COVID-19, but further research is necessary to obtain a complete assessment.


Em 24 de março de 2020, foi decretado confinamento parcial no Estado de São Paulo, Brasil, como medida para desacelerar a disseminação da COVID-19. O decreto consistia na proibição de aglomerações e na recomendação para as pessoas permanecerem em casa, exceto em situações urgentes ou de extrema necessidade. Na esteira de estudos realizados em outros países, o artigo busca avaliar os impactos do confinamento na qualidade do ar em cinco cidades no Estado de São Paulo. Nosso estudo foi realizado com o material particulado e dióxido de nitrogênio enquanto indicadores da qualidade do ar e pela correlação das concentrações dos contaminantes com dados meteorológicos. Os resultados mostraram um aumento desses contaminantes em todas as cinco cidades dentro das primeiras semanas depois do confinamento, comparado às semanas que antecederam o decreto e com o mesmo período em anos anteriores. O resultado é inconsistente com os achados usualmente relatados em outros estudos. Portanto, foi definido um objetivo secundário a fim de investigar a possível causa (ou causas) da piora na qualidade do ar, o que revelou um aumento no número de incêndios. O tempo anormalmente seco favoreceu a queima de vegetação nas áreas agrícolas rurais e em pequenas áreas de vegetação próximas às cidades, além do limitado escoamento da poluição pela chuva, o que contribuiu à maior concentração de poluentes. Os achados sugerem hipóteses sobre os possíveis efeitos dessa situação de pior qualidade do ar sobre o agravamento de casos de COVID-19, porém são necessários mais estudos para uma avaliação completa.


El 24 de marzo de 2020 se decretó un confinamiento parcial en el estado de São Paulo, Brasil, como medida para evitar la propagación de la COVID-19, que consistió en prohibir aglomeraciones de personas y avisar a la gente que permaneciera en casa, salvo para asuntos urgentes o extremadamente necesarios. Siguiendo algunos estudios realizados en otros países, el objetivo de este trabajo es evaluar los impactos del confinamiento en la calidad del aire de ciudades en el estado de São Paulo. Nuestro estudio fue realizado usando material particulado y dióxido de nitrógeno, como indicadores de la calidad del aire, y mediante la correlación de las concentraciones de contaminantes con los datos meteorológicos. Los resultados mostraron un incremento en estos contaminantes en todas las ciudades dentro de las primeras semanas tras el confinamiento, comparando las semanas antes del decreto y dentro del mismo periodo en los años previos. Este resultado es inconsistente con aquellos que han sido informados en otros estudios. Por ello, un objetivo secundario fue investigar la posible causa (o causas) de tal deterioro en la calidad del aire, que conduce a un incremento en el número de incendios. La climatología seca anómala favoreció la quema de vegetación en las áreas rurales agrícolas, y en áreas con poca vegetación cerca de las ciudades, y la eliminación limitada de la contaminación gracias a la lluvia, ambos contribuyeron a una mayor concentración de contaminación. Se especula que los posibles efectos de esta situación de una peor calidad del aire podrían afectar en el agravamiento de los casos de COVID-19, pero son quizás necesarias más investigaciones para conseguir una evaluación completa.


Subject(s)
Humans , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/analysis , Air Pollution/adverse effects , COVID-19 , Brazil/epidemiology , Communicable Disease Control , Environmental Monitoring , Pandemics , SARS-CoV-2
18.
Epigenetics Chromatin ; 14(1): 54, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1571923

ABSTRACT

BACKGROUND: Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS: We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS: First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δß > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δß > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δß > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δß > 0.05). CONCLUSION: Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , DNA Methylation , Gene Expression , SARS-CoV-2 , Sex Characteristics , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Air Pollutants/adverse effects , Angiotensin-Converting Enzyme 2/genetics , Apoptosis Regulatory Proteins/genetics , COVID-19/virology , Child , Child, Preschool , Chromosomes, Human, X , Co-Repressor Proteins/genetics , Female , Genes, X-Linked , Glutathione Peroxidase/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Risk Factors , Smoking/adverse effects , Sulfotransferases/genetics , Young Adult , beta-Arrestin 2/genetics
19.
Sci Rep ; 11(1): 23206, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545645

ABSTRACT

This study investigates thoroughly whether acute exposure to outdoor PM2.5 concentration, P, modifies the rate of change in the daily number of COVID-19 infections (R) across 18 high infection provincial capitals in China, including Wuhan. A best-fit multiple linear regression model was constructed to model the relationship between P and R, from 1 January to 20 March 2020, after accounting for meteorology, net move-in mobility (NM), time trend (T), co-morbidity (CM), and the time-lag effects. Regression analysis shows that P (ß = 0.4309, p < 0.001) is the most significant determinant of R. In addition, T (ß = -0.3870, p < 0.001), absolute humidity (AH) (ß = 0.2476, p = 0.002), P × AH (ß = -0.2237, p < 0.001), and NM (ß = 0.1383, p = 0.003) are more significant determinants of R, as compared to GDP per capita (ß = 0.1115, p = 0.015) and CM (Asthma) (ß = 0.1273, p = 0.005). A matching technique was adopted to demonstrate a possible causal relationship between P and R across 18 provincial capital cities. A 10 µg/m3 increase in P gives a 1.5% increase in R (p < 0.001). Interaction analysis also reveals that P × AH and R are negatively correlated (ß = -0.2237, p < 0.001). Given that P exacerbates R, we recommend the installation of air purifiers and improved air ventilation to reduce the effect of P on R. Given the increasing observation that COVID-19 is airborne, measures that reduce P, plus mandatory masking that reduces the risks of COVID-19 associated with viral-particulate transmission, are strongly recommended. Our study is distinguished by the focus on the rate of change instead of the individual cases of COVID-19 when modelling the statistical relationship between R and P in China; causal instead of correlation analysis via the matching analysis, while taking into account the key confounders, and the individual plus the interaction effects of P and AH on R.


Subject(s)
Air Pollutants/adverse effects , COVID-19/epidemiology , Particulate Matter/adverse effects , Risk Assessment/methods , SARS-CoV-2/isolation & purification , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , China/epidemiology , Cities/epidemiology , Humans , Incidence
20.
Inquiry ; 58: 469580211060259, 2021.
Article in English | MEDLINE | ID: covidwho-1528627

ABSTRACT

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration-response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37-1.43), 1.35 (1.32-1.37), 1.01 (1.00-1.02), 1.08 (1.07-1.10), 1.28 (1.27-1.29), and 1.26 (1.24-1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97-0.98), 0.96 (0.96-0.97), and 0.94 (0.92-0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration-response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , China , Humans , Meteorological Concepts , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL