Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
Add filters

Document Type
Year range
1.
Environ Health ; 21(1): 17, 2022 01 16.
Article in English | MEDLINE | ID: covidwho-1630544

ABSTRACT

BACKGROUND: Air pollution is one of the main concerns for the health of European citizens, and cities are currently striving to accomplish EU air pollution regulation. The 2020 COVID-19 lockdown measures can be seen as an unintended but effective experiment to assess the impact of traffic restriction policies on air pollution. Our objective was to estimate the impact of the lockdown measures on NO2 concentrations and health in the two largest Italian cities. METHODS: NO2 concentration datasets were built using data deriving from a 1-month citizen science monitoring campaign that took place in Milan and Rome just before the Italian lockdown period. Annual mean NO2 concentrations were estimated for a lockdown scenario (Scenario 1) and a scenario without lockdown (Scenario 2), by applying city-specific annual adjustment factors to the 1-month data. The latter were estimated deriving data from Air Quality Network stations and by applying a machine learning approach. NO2 spatial distribution was estimated at a neighbourhood scale by applying Land Use Random Forest models for the two scenarios. Finally, the impact of lockdown on health was estimated by subtracting attributable deaths for Scenario 1 and those for Scenario 2, both estimated by applying literature-based dose-response function on the counterfactual concentrations of 10 µg/m3. RESULTS: The Land Use Random Forest models were able to capture 41-42% of the total NO2 variability. Passing from Scenario 2 (annual NO2 without lockdown) to Scenario 1 (annual NO2 with lockdown), the population-weighted exposure to NO2 for Milan and Rome decreased by 15.1% and 15.3% on an annual basis. Considering the 10 µg/m3 counterfactual, prevented deaths were respectively 213 and 604. CONCLUSIONS: Our results show that the lockdown had a beneficial impact on air quality and human health. However, compliance with the current EU legal limit is not enough to avoid a high number of NO2 attributable deaths. This contribution reaffirms the potentiality of the citizen science approach and calls for more ambitious traffic calming policies and a re-evaluation of the legal annual limit value for NO2 for the protection of human health.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Italy/epidemiology , Machine Learning , Nitrogen Dioxide , Particulate Matter/analysis , Rome/epidemiology , SARS-CoV-2
2.
Environ Monit Assess ; 194(2): 77, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616189

ABSTRACT

The emergence of COVID-19 has brought the entire planet to a halt. Many countries, including India, were compelled to shut down most urban, industrial, social and other activities as a result of the pandemic. Due to a series of complete lockdowns imposed in India from March 24 to May 17, 2020, and state-wise local level restrictions afterward, have resulted in significant reduction of emissions of numerous atmospheric pollutants. The objective of this study is to analyse the change in concentration of various pollutants such as nitrogen oxide (NO2), carbon monoxide (CO) and aerosol optical depth (AOD) due to lockdown and also to quantify the contribution of crop stubble burning to air pollution. The Sentinel-5P based NO2 and CO observations for 2019 and 2020 and Moderate Resolution Imaging Spectroradiometer (MODIS)-based AOD observations for 2016-2020 were used for detecting the variations. The obtained results showed a significant decrease in NO2 levels during various stages of lockdown. Small decrease in CO levels was observed across most part of the India. With a few exceptions, such as coastal and desert regions, there was a moderate decrease in AOD levels. Furthermore, to study the contribution of NO2, CO and AOD from crop stubble burning, MODIS observations on active fire events were obtained from Visible Infrared Imaging Radiometer Suite (VIIRS). The burning of crop stubble increased NO2 emissions by 22 to 80%. CO levels, on the other hand, have risen by 7 to 25%. A considerable variation in AOD was reported, ranging from 1 to 426%.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , India , SARS-CoV-2 , Triticum
3.
Int J Environ Res Public Health ; 19(1)2022 01 05.
Article in English | MEDLINE | ID: covidwho-1613774

ABSTRACT

In 2019, a novel coronavirus, SARS-CoV-2, was first reported in Wuhan, China. The virus causes the disease commonly known as COVID-19, and, since its emergence, it has infected over 252 million individuals globally and taken the lives of over 5 million in the same time span. Primary research on SARS-CoV-2 and COVID-19 focused on understanding the biomolecular composition of the virus. This research has led to the development of multiple vaccines with great efficacy and antiviral treatments for the disease. The development of biomedical interventions has been crucial to combating this pandemic; additionally, environmental confounding variables that could have exacerbated the pandemic need further assessment. In this research study, we conducted a spatial analysis of particulate matter (PM) concentration and its association with COVID-19 mortality in the United States. Results of this study demonstrate a significant positive correlation between PM concentration levels and COVID-19 mortality; however, this does not necessarily imply a causal relationship. These results are consistent with similar studies in Italy and China, where significant COVID-19 cases and corresponding deaths were exhibited. Furthermore, maps of the data demonstrate clustering of COVID-19 mortality which suggest further investigation into the social determinants of health impacting the pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Humans , Pandemics , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2 , Spatial Analysis
4.
Int J Environ Res Public Health ; 19(1)2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1613770

ABSTRACT

High NO2 concentrations (long term average of 383 µg/m3 in 2016/2017) recorded at Birmingham New Street railway station have resulted in the upgrade of the bi-directional fan system to aid wind dispersion within the enclosed platform environment. This paper attempts to examine how successful this intervention has been in improving air quality for both passengers and workers within the station. New air pollution data in 2020 has enabled comparisons to the 2016/2017 monitoring campaign revealing a 23-42% decrease in measured NO2 concentrations. The new levels of NO2 are below the Occupational Health standards but still well above the EU Public Health Standards. This reduction, together with a substantial decrease (up to 81%) in measured Particulate Matter (PM) concentrations, can most likely be attributed to the new fan system effectiveness. Carbon Monoxide levels were well below Occupational and Public Health Standards at all times. The COVID-19 pandemic "initial lockdown" period has also allowed an insight into the resultant air quality at lower rail-traffic intensities, which produced a further reduction in air pollutants, to roughly half the pre-lockdown concentrations. This study shows the scope of improvement that can be achieved through an engineering solution implemented to improve the ventilation system of an enclosed railway station. Further reduction in air pollution would require additional approaches, such as the removal of diesel engine exhaust emissions via the adoption of electric or diesel-electric hybrid powered services.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
5.
Int J Environ Res Public Health ; 19(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1613765

ABSTRACT

COVID-19 has caused a global pandemic with considerable impact. Studies have examined the influence of socioeconomic status and air pollution on COVID-19 risk but in low detail. This study seeks to further elucidate the nuances of socioeconomic status, as defined by the Index of Multiple Deprivation (IMD), air pollution, and their relationship. We examined the effect of IMD and air pollution on the likelihood of testing positive for SARS-CoV-2 among 66,732 UKB participants tested for SARS-CoV-2 from 16 March 2020 through 16 March 2021. Logistic regression was performed controlling for age, sex, ancestry and IMD or air pollution in the respective models. IMD and its sub-scores were significantly associated with increased risk of testing positive for SARS-CoV-2. All particulate matter less than 2.5 µm (PM2.5), nitrogen oxide (NOx), and nitrogen dioxide (NO2) levels were associated with increased likelihood of testing positive for SARS-CoV-2. Measures of green space and natural environment around participants' homes were associated with reduced likelihood of SARS-CoV-2. Socioeconomic status and air pollution have independent effects on the risk of testing positive for SARS-CoV-2. Green space and natural environment space in the proximity of people's homes may mediate the effect of air pollution on the risk of testing positive for SARS-CoV-2.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Biological Specimen Banks , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2 , United Kingdom/epidemiology
6.
Int J Environ Res Public Health ; 19(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1613763

ABSTRACT

The 2019 novel coronavirus disease (COVID-19) has become a severe public health and social problem worldwide. A limitation of the existing literature is that multiple environmental variables have not been frequently elaborated, which is why the overall effect of the environment on COVID-19 has not been conclusive. In this study, we used generalized additive model (GAM) to detect the relationship between meteorological and air pollution variables and COVID-19 in four urban agglomerations in China and made comparisons among the urban agglomerations. The four urban agglomerations are Beijing-Tianjin-Hebei (BTH), middle reaches of the Yangtze River (MYR), Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The daily rates of average precipitation, temperature, relative humidity, sunshine duration, and atmospheric pressure were selected as meteorological variables. The PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) contents were selected as air pollution variables. The results indicated that meteorological and air pollution variables tended to be significantly correlated. Moreover, the nature of the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and meteorological and air pollution variables (i.e., linear or nonlinear) varied with urban agglomerations. Among the variance explained by GAMs, BTH had the highest value (75.4%), while MYR had the lowest value (35.2%). The values of the YRD and PRD were between the above two, namely 45.6% and 62.2%, respectively. The findings showed that the association between SARS-CoV-2 and meteorological and air pollution variables varied in regions, making it difficult to obtain a relationship that is applicable to every region. Moreover, this study enriches our understanding of SARS-CoV-2. It is required to create awareness within the government that anti-COVID-19 measures should be adapted to the local meteorological and air pollution conditions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
7.
Huan Jing Ke Xue ; 43(1): 123-131, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: covidwho-1600031

ABSTRACT

A continuous observation campaign was carried out with the Syntech Spectras GC955 volatile organics online monitoring system from December 1, 2019 to March 31, 2020 during the COVID-19 period in Hangzhou. Composition characteristics, diurnal variation, and atmospheric chemical reactivity of VOCs were analyzed. The results showed that φ(total VOCs) were the highest before the COVID-19 pandemic in different sites and the lowest during the first response period. The φ(total VOCs) at night was higher than that during the day. The daily variation in Wolongqiao φ(total VOCs) was less than that in Xiasha. The daily variation in φ(total VOCs) during the first level response period was less than that during the other three periods. The diurnal variation in the φ (total VOCs) in Xiasha showed a "V" shape, and that in Wolongqiao showed a typical bimodal structure. The OFP in Xiasha was higher than that in Wolongqiao. The OFP were the highest at the two sites before the COVID-19 pandemic. The OFP was the lowest during the first response period in Xiasha and the lowest during the second response period in Wolongqiao. The OFP of aromatics and olefins was higher, and the OFP of alkynes was the lowest in Xiasha. The OFP of olefin in Wolongqiao was much higher than that of the other three components, followed by alkane and alkyne.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Humans , Ozone/analysis , Pandemics , SARS-CoV-2 , Volatile Organic Compounds/analysis
8.
J Environ Sci (China) ; 115: 443-452, 2022 May.
Article in English | MEDLINE | ID: covidwho-1599196

ABSTRACT

The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 µg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
9.
Environ Monit Assess ; 194(2): 49, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1595788

ABSTRACT

Originating from China, COVID-19 became the first-ever coronavirus pandemic, wreaking havoc in 218 nations. The lack of a potential treatment exacerbated by the inability of the healthcare infrastructure to contain the viral trajectory led to a worldwide lockdown. The anthropogenic halt presented an unprecedented background to quantify the effect of the anthroposphere on environmental pollution. Consequently, we analyzed the variations in the air (PM10, PM2.5, NO2, SO2) and water pollutants (BOD, COD, DO, coliform) using real-time monitoring data in the majorly hit Indian metropolitan states during the lockdown in contrast to 2019 levels. The overall AQI (air quality index) de-escalated by -31.35%, -34.35%, -32.63%, -29.25% in Delhi, Tamil Nadu, West Bengal, and Karnataka, respectively, from the 2019 levels. The daily concentrations of NO2, PM2.5, and PM10 plunged tremendously. The exact pre-disposing factors responsible for higher COVID-19 transmission in some geographical centers remain elusive. Investigations have corroborated putative links between air pollutants and COVID-19 mortalities. Therefore, we further mapped PM2.5, PM10, NO2, and SO2 to co-relate with COVID-19 infectivity and mortality across the study states. Significant (P < 0.001) positive correlation between COVID-19 transmission was established for all pollutants with maximum co-relation with AQI followed by NO2. River Ganga water in Uttarakhand was deemed "fit for drinking" for the first time in two decades. An aggregate of -71.94, -61.32, and -77.94 decrease in BOD, COD, total coliform levels, and an 11.75 rise in the average DO levels from 2019 data. This study will better assist the future framework of health and environment restoration policies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Environmental Pollution , Humans , India , Particulate Matter/analysis , SARS-CoV-2
10.
Int J Environ Res Public Health ; 19(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1580806

ABSTRACT

The practice of spending time in green areas to gain the health benefits provided by trees is well known, especially in Asia, as 'forest bathing', and the consequent protective and experimentally detectable effects on the human body have been linked to the biogenic volatile organic compounds released by plants. Houseplants are common in houses over the globe and are particularly appreciated for aesthetic reasons as well for their ability to purify air from some environmental volatile pollutants indoors. However, to the best of our knowledge, no attempt has been made to describe the health benefits achievable from houseplants thanks to the biogenic volatile organic compounds released, especially during the day, from some of them. Therefore, we performed the present study, based on both a literature analysis and in silico studies, to investigate whether the volatile compounds and aerosol constituents emitted by some of the most common houseplants (such as peace lily plant, Spathiphyllum wallisii, and iron plant, Aspidistra eliator) could be exploited in 'indoor forest bathing' approaches, as proposed here for the first time not only in private houses but also public spaces, such as offices, hospitals, and schools. By using molecular docking (MD) and other in silico methodologies for estimating vapor pressures and chemico-physical/pharmacokinetic properties prediction, we found that ß-costol is an organic compound, emitted in appreciable amounts by the houseplant Spathiphyllum wallisii, endowed with potential antiviral properties as emerged by our MD calculations in a SARS-CoV-2 Mpro (main protease) inhibition study, together with sesquirosefuran. Our studies suggest that the anti-COVID-19 potential of these houseplant-emitted compounds is comparable or even higher than known Mpro inhibitors, such as eugenol, and sustain the utility of houseplants as indoor biogenic volatile organic compound emitters for immunity boosting and health protection.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Forests , Humans , Molecular Docking Simulation , SARS-CoV-2 , Volatile Organic Compounds/analysis
11.
Int J Environ Res Public Health ; 18(24)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1580723

ABSTRACT

The global COVID-19 pandemic that began in late December 2019 led to unprecedented lockdowns worldwide, providing a unique opportunity to investigate in detail the impacts of restricted anthropogenic emissions on air quality. A wide range of strategies and approaches exist to achieve this. In this paper, we use the "deweather" R package, based on Boosted Regression Tree (BRT) models, first to remove the influences of meteorology and emission trend patterns from NO, NO2, PM10 and O3 data series, and then to calculate the relative changes in air pollutant levels in 2020 with respect to the previous seven years (2013-2019). Data from a northern Spanish region, Cantabria, with all types of monitoring stations (traffic, urban background, industrial and rural) were used, dividing the calendar year into eight periods according to the intensity of government restrictions. The results showed mean reductions in the lockdown period above -50% for NOx, around -10% for PM10 and below -5% for O3. Small differences were found between the relative changes obtained from normalised data with respect to those from observations. These results highlight the importance of developing an integrated policy to reduce anthropogenic emissions and the need to move towards sustainable mobility to ensure safer air quality levels, as pre-existing concentrations in some cases exceed the safe threshold.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Meteorology , Pandemics , Particulate Matter/analysis , SARS-CoV-2
12.
Environ Pollut ; 292(Pt B): 118417, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1587843

ABSTRACT

The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM2.5 and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM2.5 only decreased by 4% relative to the baselines. Major chemical components of PM2.5, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM2.5 sources were assessed using hourly chemical composition measurements of PM2.5. Major regional and secondary PM2.5 sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
13.
Environ Pollut ; 296: 118716, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1587842

ABSTRACT

The significant reduction in PM2.5 mass concentration after the outbreak of COVID-19 provided a unique opportunity further to study the formation mechanism of secondary inorganic aerosols. Hourly data of chemical components in PM2.5, gaseous pollutants, and meteorological data were obtained from January 1 to 23, 2020 (pre-lockdown) and January 24 to February 17, 2020 (COVID-lockdown) in Zhengzhou, China. Sulfate, nitrate, and ammonium were the main components of PM2.5 during both the pre-lockdown and COVID-lockdown periods. Compared with the pre-lockdown period, even though the concentration and proportion of nitrate decreased, nitrate was the dominant component in PM2.5 during the COVID-lockdown period. Moreover, nitrate production was enhanced by the elevated O3 concentration, which was favorable for the homogeneous and hydrolysis nitrate formation despite the drastic decrease of NO2. The proportion of sulfate during the COVID-lockdown period was higher than that before. Aqueous-phase reactions of H2O2 and transition metal (TMI) catalyzed oxidations were the major pathways for sulfate formation. During the COVID-lockdown period, TMI-catalyzed oxidation became the dominant pathway for aqueous-phase sulfate formation because the elevated acidity favored the dissolution of TMI. Therefore, the enhanced TMI-catalyzed oxidation affected by the elevated particle acidity dominated the sulfate formation, resulting in the slight increase of sulfate concentration during the COVID-lockdown period in Zhengzhou.


Subject(s)
Air Pollutants , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Hydrogen Peroxide , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Sulfates
14.
Sci Rep ; 11(1): 23378, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1585808

ABSTRACT

Emissions of black carbon (BC) particles from anthropogenic and natural sources contribute to climate change and human health impacts. Therefore, they need to be accurately quantified to develop an effective mitigation strategy. Although the spread of the emission flux estimates for China have recently narrowed under the constraints of atmospheric observations, consensus has not been reached regarding the dominant emission sector. Here, we quantified the contribution of the residential sector, as 64% (44-82%) in 2019, using the response of the observed atmospheric concentration in the outflowing air during Feb-Mar 2020, with the prevalence of the COVID-19 pandemic and restricted human activities over China. In detail, the BC emission fluxes, estimated after removing effects from meteorological variability, dropped only slightly (- 18%) during Feb-Mar 2020 from the levels in the previous year for selected air masses of Chinese origin, suggesting the contributions from the transport and industry sectors (36%) were smaller than the rest from the residential sector (64%). Carbon monoxide (CO) behaved differently, with larger emission reductions (- 35%) in the period Feb-Mar 2020, suggesting dominance of non-residential (i.e., transport and industry) sectors, which contributed 70% (48-100%) emission during 2019. The estimated BC/CO emission ratio for these sectors will help to further constrain bottom-up emission inventories. We comprehensively provide a clear scientific evidence supporting mitigation policies targeting reduction in residential BC emissions from China by demonstrating the economic feasibility using marginal abatement cost curves.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , COVID-19/prevention & control , Particulate Matter/analysis , SARS-CoV-2/isolation & purification , Soot/analysis , Algorithms , Atmosphere/analysis , COVID-19/epidemiology , COVID-19/virology , China , Climate Change , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Geography , Human Activities , Humans , Models, Theoretical , Pandemics , Residence Characteristics , SARS-CoV-2/physiology , Seasons , Wind
15.
Cad. Saúde Pública (Online) ; 37(9): e00242320, 2021. tab, graf
Article in English | LILACS (Americas) | ID: covidwho-1573779

ABSTRACT

On March 24, 2020, a partial lockdown was decreed in the state of São Paulo, Brazil, as a measure to hinder the spread of COVID-19, which consisted in prohibiting crowding and advising people to stay home, except for urgent or extremely necessary matters. Based on studies performed in other countries, this study aims to assess the impacts of the lockdown on the air quality of five cities in the state of São Paulo. Our study was conducted by using particulate matter and nitrogen dioxide as air quality indicators, and by correlating the contaminants concentrations with weather data. The results showed an increase in these contaminants in all cities within the first weeks after the lockdown compared with the weeks before the decree and with the same period in previous years. This result is inconsistent with the literature. Therefore, a secondary goal was set to investigate the possible cause (or causes) of such deterioration in air quality, which led to the increased number of wildfires. The anomalous dry weather favored the burning of vegetation in agricultural rural areas and in small, vegetated areas near the municipalities, and limited pollution scavenging by rainfall, both of which contributed to higher pollution concentration. We hypothesize the possible effects of worse air quality on the aggravation of COVID-19, but further research is necessary to obtain a complete assessment.


Em 24 de março de 2020, foi decretado confinamento parcial no Estado de São Paulo, Brasil, como medida para desacelerar a disseminação da COVID-19. O decreto consistia na proibição de aglomerações e na recomendação para as pessoas permanecerem em casa, exceto em situações urgentes ou de extrema necessidade. Na esteira de estudos realizados em outros países, o artigo busca avaliar os impactos do confinamento na qualidade do ar em cinco cidades no Estado de São Paulo. Nosso estudo foi realizado com o material particulado e dióxido de nitrogênio enquanto indicadores da qualidade do ar e pela correlação das concentrações dos contaminantes com dados meteorológicos. Os resultados mostraram um aumento desses contaminantes em todas as cinco cidades dentro das primeiras semanas depois do confinamento, comparado às semanas que antecederam o decreto e com o mesmo período em anos anteriores. O resultado é inconsistente com os achados usualmente relatados em outros estudos. Portanto, foi definido um objetivo secundário a fim de investigar a possível causa (ou causas) da piora na qualidade do ar, o que revelou um aumento no número de incêndios. O tempo anormalmente seco favoreceu a queima de vegetação nas áreas agrícolas rurais e em pequenas áreas de vegetação próximas às cidades, além do limitado escoamento da poluição pela chuva, o que contribuiu à maior concentração de poluentes. Os achados sugerem hipóteses sobre os possíveis efeitos dessa situação de pior qualidade do ar sobre o agravamento de casos de COVID-19, porém são necessários mais estudos para uma avaliação completa.


El 24 de marzo de 2020 se decretó un confinamiento parcial en el estado de São Paulo, Brasil, como medida para evitar la propagación de la COVID-19, que consistió en prohibir aglomeraciones de personas y avisar a la gente que permaneciera en casa, salvo para asuntos urgentes o extremadamente necesarios. Siguiendo algunos estudios realizados en otros países, el objetivo de este trabajo es evaluar los impactos del confinamiento en la calidad del aire de ciudades en el estado de São Paulo. Nuestro estudio fue realizado usando material particulado y dióxido de nitrógeno, como indicadores de la calidad del aire, y mediante la correlación de las concentraciones de contaminantes con los datos meteorológicos. Los resultados mostraron un incremento en estos contaminantes en todas las ciudades dentro de las primeras semanas tras el confinamiento, comparando las semanas antes del decreto y dentro del mismo periodo en los años previos. Este resultado es inconsistente con aquellos que han sido informados en otros estudios. Por ello, un objetivo secundario fue investigar la posible causa (o causas) de tal deterioro en la calidad del aire, que conduce a un incremento en el número de incendios. La climatología seca anómala favoreció la quema de vegetación en las áreas rurales agrícolas, y en áreas con poca vegetación cerca de las ciudades, y la eliminación limitada de la contaminación gracias a la lluvia, ambos contribuyeron a una mayor concentración de contaminación. Se especula que los posibles efectos de esta situación de una peor calidad del aire podrían afectar en el agravamiento de los casos de COVID-19, pero son quizás necesarias más investigaciones para conseguir una evaluación completa.


Subject(s)
Humans , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/analysis , Air Pollution/adverse effects , COVID-19 , Brazil/epidemiology , Communicable Disease Control , Environmental Monitoring , Pandemics , SARS-CoV-2
16.
Environ Sci Technol ; 56(1): 155-164, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1576042

ABSTRACT

During the SARS period in 2003 and COVID-19 pandemic period in 2020, unexpected severe particulate matter pollution occurred in northern China, although the anthropogenic activities and associated emissions have assumed to be reduced dramatically. This anomalistic increase in PM2.5 pollution raises a question about how source emissions impact the air quality during these pandemic periods. In this study, we investigated the stable Cu and Si isotopic compositions and typical source-specific fingerprints of PM2.5 and its sources. We show that the primary PM2.5 emissions (PM2.5 emitted directly from sources) actually had no reduction but redistribution during these pandemic periods, rather than the previous thought of being greatly reduced. This finding provided critical evidence to interpret the anomalistic PM2.5 increase during the pandemic periods in north China. Our results also suggested that both the energy structure adjustment and stringent regulations on primary emissions should be synergistically implemented in a regional scale for clean air actions in China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
17.
Environ Res ; 204(Pt D): 112369, 2022 03.
Article in English | MEDLINE | ID: covidwho-1574591

ABSTRACT

Brazil, the country most impacted by the coronavirus disease 2019 (COVID-19) on the southern hemisphere, use intensive care admissions per day, mobility and other indices to monitor quarantines and prevent the transmissions of SARS-CoV-2. In this study we quantified the associations between residential mobility index (RMI), air pollution, meteorology, and daily cases and deaths of COVID-19 in São Paulo, Brazil. We applied a semiparametric generalized additive model (GAM) to estimate: 1) the association between RMI and COVID-19, accounting for ambient particulate matter (PM2.5), ozone (O3), relative humidity, temperature and delayed exposure between 4 and 21 days, and 2) the association between COVID-19 and exposure to for ambient particulate matter (PM2.5), ozone (O3), accounting for relative humidity, temperature and mobility. We found that an RMI of 45.28% results in 1212 cases (95% CI: 1189 to 1235) and 44 deaths (95% CI: 40 to 47). Increasing the isolation from 45.28% to 50% would avoid 438 cases and 21 deaths. Also, we found that an increment of 10 µg⋅m-³ of PM2.5 results in a risk of 1.140 (95% CI: 1.021 to 1.274) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths, while O3 produces a relative risk of 1.075 (95% CI: 1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, respectively. We compared our results with observations and literature review, finding well agreement. Policymakers can use such mobility indices as tools to control social distance activities. Spatial distancing is an important factor to control COVID-19, however, measuring face-mask usage would enhance the understanding the pandemic dynamic. Small increments of air pollution result in an increased number of COVID-19 cases and deaths.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Brazil/epidemiology , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
18.
Int J Environ Res Public Health ; 18(24)2021 12 13.
Article in English | MEDLINE | ID: covidwho-1572473

ABSTRACT

Worldwide, over half of the global population is living in urban areas. The metropolitan areas are highly populated and environmentally non-green regions on the planet. In green space regions, plants, grass, and green vegetation prevent soil erosion, absorb air pollutants, provide fresh and clean air, and minimize the burden of diseases. Presently, the entire world is facing a turmoil situation due to the COVID-19 pandemic. This study investigates the effect of the green space environment on air pollutants particulate matter PM2.5, PM10, carbon monoxide (CO), ozone (O3), incidence and mortality of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in environmentally highly green and less-green countries. We randomly selected 17 countries based on the Environmental Performance Index (EPI) data. The 60% of the EPI score is based on seven categories: "biodiversity and habitat, ecosystem, fisheries, climate change, pollution emissions, agriculture, and water resources". However, 40% of the score is based on four categories: "air quality, sanitation and drinking water, heavy metals, and waste management". The air pollutants and SARS-CoV-2 cases and deaths were recorded from 25 January 2020, to 11 July 2021. The air pollutants "PM2.5, PM10, CO, and O3" were recorded from the metrological websites, Air Quality Index-AQI, 2021. The COVID-19 daily cases and deaths were obtained from the World Health Organization. The result reveals that air pollutants mean values for PM2.5 110.73 ± 1.09 vs. 31.35 ± 0.29; PM10 80.43 ± 1.11 vs. 17.78 ± 0.15; CO 7.92 ± 0.14 vs. 2.35 ± 0.03 were significantly decreased (p < 0.0001) in environmentally highly green space countries compared to less-green countries. Moreover, SARS-CoV-2 cases 15,713.61 ± 702.42 vs. 3445.59 ± 108.09; and deaths 297.56 ± 11.27 vs. 72.54 ± 2.61 were also significantly decreased in highly green countries compared to less-green countries. The green environment positively impacts human wellbeing. The policymakers must implement policies to keep the living areas, surroundings, towns, and cities clean and green to minimize air pollution and combat the present pandemic of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Ecosystem , Environmental Monitoring , Humans , Incidence , Pandemics , Parks, Recreational , Particulate Matter/analysis , SARS-CoV-2
19.
Environ Sci Process Impacts ; 23(7): 923-946, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1559452

ABSTRACT

Globally, humanity is facing its most significant challenge in 100 years due to the novel coronavirus, SARS-CoV-2, which is responsible for COVID-19. Under the enormous pressure created by the pandemic, scientists are studying virus transmission mechanisms in order to develop effective mitigation strategies. However, no established methods have been developed to control the spread of this deadly virus. In addition, the ease in lockdown has escalated air pollution which may affect SARS-CoV-2 transmission through attachment to particulates. The present review summarizes the role of graphene nanomaterials, which show antimicrobial behavior and have antiviral efficacy, in reducing the spread of COVID-19. Graphene and its derivatives have excellent antimicrobial efficacy, providing both physical and chemical mechanisms of damage. Coupled with their lightness, optimal properties, and ease of functionalization, they are optimal nanomaterials for coating onto fabrics such as personal protection equipment, face masks and gloves to control the transmission of SARS-CoV-2 effectively. Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.


Subject(s)
Air Pollutants , COVID-19 , Graphite , Air Pollutants/analysis , Cities , Communicable Disease Control , Humans , India , Pandemics , SARS-CoV-2
20.
Inquiry ; 58: 469580211060259, 2021.
Article in English | MEDLINE | ID: covidwho-1528627

ABSTRACT

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration-response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37-1.43), 1.35 (1.32-1.37), 1.01 (1.00-1.02), 1.08 (1.07-1.10), 1.28 (1.27-1.29), and 1.26 (1.24-1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97-0.98), 0.96 (0.96-0.97), and 0.94 (0.92-0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration-response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , China , Humans , Meteorological Concepts , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...