Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add filters

Document Type
Year range
1.
Cad. Saúde Pública (Online) ; 37(9): e00242320, 2021. tab, graf
Article in English | LILACS (Americas) | ID: covidwho-1573779

ABSTRACT

On March 24, 2020, a partial lockdown was decreed in the state of São Paulo, Brazil, as a measure to hinder the spread of COVID-19, which consisted in prohibiting crowding and advising people to stay home, except for urgent or extremely necessary matters. Based on studies performed in other countries, this study aims to assess the impacts of the lockdown on the air quality of five cities in the state of São Paulo. Our study was conducted by using particulate matter and nitrogen dioxide as air quality indicators, and by correlating the contaminants concentrations with weather data. The results showed an increase in these contaminants in all cities within the first weeks after the lockdown compared with the weeks before the decree and with the same period in previous years. This result is inconsistent with the literature. Therefore, a secondary goal was set to investigate the possible cause (or causes) of such deterioration in air quality, which led to the increased number of wildfires. The anomalous dry weather favored the burning of vegetation in agricultural rural areas and in small, vegetated areas near the municipalities, and limited pollution scavenging by rainfall, both of which contributed to higher pollution concentration. We hypothesize the possible effects of worse air quality on the aggravation of COVID-19, but further research is necessary to obtain a complete assessment.


Em 24 de março de 2020, foi decretado confinamento parcial no Estado de São Paulo, Brasil, como medida para desacelerar a disseminação da COVID-19. O decreto consistia na proibição de aglomerações e na recomendação para as pessoas permanecerem em casa, exceto em situações urgentes ou de extrema necessidade. Na esteira de estudos realizados em outros países, o artigo busca avaliar os impactos do confinamento na qualidade do ar em cinco cidades no Estado de São Paulo. Nosso estudo foi realizado com o material particulado e dióxido de nitrogênio enquanto indicadores da qualidade do ar e pela correlação das concentrações dos contaminantes com dados meteorológicos. Os resultados mostraram um aumento desses contaminantes em todas as cinco cidades dentro das primeiras semanas depois do confinamento, comparado às semanas que antecederam o decreto e com o mesmo período em anos anteriores. O resultado é inconsistente com os achados usualmente relatados em outros estudos. Portanto, foi definido um objetivo secundário a fim de investigar a possível causa (ou causas) da piora na qualidade do ar, o que revelou um aumento no número de incêndios. O tempo anormalmente seco favoreceu a queima de vegetação nas áreas agrícolas rurais e em pequenas áreas de vegetação próximas às cidades, além do limitado escoamento da poluição pela chuva, o que contribuiu à maior concentração de poluentes. Os achados sugerem hipóteses sobre os possíveis efeitos dessa situação de pior qualidade do ar sobre o agravamento de casos de COVID-19, porém são necessários mais estudos para uma avaliação completa.


El 24 de marzo de 2020 se decretó un confinamiento parcial en el estado de São Paulo, Brasil, como medida para evitar la propagación de la COVID-19, que consistió en prohibir aglomeraciones de personas y avisar a la gente que permaneciera en casa, salvo para asuntos urgentes o extremadamente necesarios. Siguiendo algunos estudios realizados en otros países, el objetivo de este trabajo es evaluar los impactos del confinamiento en la calidad del aire de ciudades en el estado de São Paulo. Nuestro estudio fue realizado usando material particulado y dióxido de nitrógeno, como indicadores de la calidad del aire, y mediante la correlación de las concentraciones de contaminantes con los datos meteorológicos. Los resultados mostraron un incremento en estos contaminantes en todas las ciudades dentro de las primeras semanas tras el confinamiento, comparando las semanas antes del decreto y dentro del mismo periodo en los años previos. Este resultado es inconsistente con aquellos que han sido informados en otros estudios. Por ello, un objetivo secundario fue investigar la posible causa (o causas) de tal deterioro en la calidad del aire, que conduce a un incremento en el número de incendios. La climatología seca anómala favoreció la quema de vegetación en las áreas rurales agrícolas, y en áreas con poca vegetación cerca de las ciudades, y la eliminación limitada de la contaminación gracias a la lluvia, ambos contribuyeron a una mayor concentración de contaminación. Se especula que los posibles efectos de esta situación de una peor calidad del aire podrían afectar en el agravamiento de los casos de COVID-19, pero son quizás necesarias más investigaciones para conseguir una evaluación completa.


Subject(s)
Humans , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/analysis , Air Pollution/adverse effects , COVID-19 , Brazil/epidemiology , Communicable Disease Control , Environmental Monitoring , Pandemics , SARS-CoV-2
2.
Int J Environ Res Public Health ; 18(24)2021 12 13.
Article in English | MEDLINE | ID: covidwho-1572473

ABSTRACT

Worldwide, over half of the global population is living in urban areas. The metropolitan areas are highly populated and environmentally non-green regions on the planet. In green space regions, plants, grass, and green vegetation prevent soil erosion, absorb air pollutants, provide fresh and clean air, and minimize the burden of diseases. Presently, the entire world is facing a turmoil situation due to the COVID-19 pandemic. This study investigates the effect of the green space environment on air pollutants particulate matter PM2.5, PM10, carbon monoxide (CO), ozone (O3), incidence and mortality of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in environmentally highly green and less-green countries. We randomly selected 17 countries based on the Environmental Performance Index (EPI) data. The 60% of the EPI score is based on seven categories: "biodiversity and habitat, ecosystem, fisheries, climate change, pollution emissions, agriculture, and water resources". However, 40% of the score is based on four categories: "air quality, sanitation and drinking water, heavy metals, and waste management". The air pollutants and SARS-CoV-2 cases and deaths were recorded from 25 January 2020, to 11 July 2021. The air pollutants "PM2.5, PM10, CO, and O3" were recorded from the metrological websites, Air Quality Index-AQI, 2021. The COVID-19 daily cases and deaths were obtained from the World Health Organization. The result reveals that air pollutants mean values for PM2.5 110.73 ± 1.09 vs. 31.35 ± 0.29; PM10 80.43 ± 1.11 vs. 17.78 ± 0.15; CO 7.92 ± 0.14 vs. 2.35 ± 0.03 were significantly decreased (p < 0.0001) in environmentally highly green space countries compared to less-green countries. Moreover, SARS-CoV-2 cases 15,713.61 ± 702.42 vs. 3445.59 ± 108.09; and deaths 297.56 ± 11.27 vs. 72.54 ± 2.61 were also significantly decreased in highly green countries compared to less-green countries. The green environment positively impacts human wellbeing. The policymakers must implement policies to keep the living areas, surroundings, towns, and cities clean and green to minimize air pollution and combat the present pandemic of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Ecosystem , Environmental Monitoring , Humans , Incidence , Pandemics , Parks, Recreational , Particulate Matter/analysis , SARS-CoV-2
4.
Sci Total Environ ; 804: 149986, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1525947

ABSTRACT

BACKGROUND: Long-term exposure to ambient air pollution was linked to depression incidence, although the results were limited and inconsistent. OBJECTIVES: To investigate the effects of long-term air pollution exposure on depression risk prospectively in China. METHODS: The present study used data from Yinzhou Cohort on adults without depression at baseline, and followed up until April 2020. Two-year moving average concentrations of particulate matter with a diameter ≤ 2.5 µm (PM2.5), ≤10 µm (PM10) and nitrogen dioxide (NO2) were measured using land-use regression (LUR) models for each participant. Depression cases were ascertained using the Health Information System (HIS) of the local health administration by linking the unique identifiers. We conducted Cox regression models with time-varying exposures to estimate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of depression with each pollutant, after adjusting for a sequence of individual covariates as demographic characteristics, lifestyles, and comorbidity. Besides, physical activity, baseline potential depressive symptoms, cancer status, COVID-19 pandemic, different outcome definitions and air pollution exposure windows were considered in sensitivity analyses. RESULTS: Among the 30,712 adults with a mean age of 62.22 ± 11.25, 1024 incident depression cases were identified over totaling 98,619 person-years of observation. Interquartile range increments of the air pollutants were associated with increased risks of depression, and the corresponding HRs were 1.59 (95%CI: 1.46, 1.72) for PM2.5, 1.49 (95%CI: 1.35, 1.64) for PM10 and 1.58 (95%CI: 1.42, 1.77) for NO2. Subgroup analyses suggested that participants without taking any protective measures towards air pollution were more susceptible. The results remained robust in all sensitivity analyses. CONCLUSIONS: Long-term exposure to ambient air pollution was identified as a risk factor for depression onset. Strategies to reduce air pollution are necessary to decrease the disease burden of depression.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Cohort Studies , Depression/epidemiology , Environmental Exposure/analysis , Humans , Incidence , Nitrogen Dioxide/analysis , Pandemics , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2
6.
Eur J Public Health ; 31(Supplement_4): iv36-iv39, 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1506157

ABSTRACT

Although the pandemic has caused substantial losses in economic prosperity and human lives, it has also some positive impacts on the environment. Restricted mobility, complete closure, less traffic and industry have led to improved air quality especially in urban settings. Not only is air pollution an important determinant of chronic diseases, such as heart and lung disorders, but it has also been shown that poor air quality increases the risk of COVID-19. In this article, we review some of the findings on changes in air quality during the pandemic, and its potential effects on health. We need to continue to monitor the effects of change in air quality, due to COVID-19 lockdown or other factors, but also keep all our efforts to improve air quality even faster and more persistent, bringing the pollution levels below what WHO recommends are safe to live with.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/poisoning , Air Pollution/adverse effects , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Particulate Matter/poisoning , SARS-CoV-2
7.
Environ Pollut ; 292(Pt B): 118369, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1505029

ABSTRACT

The Sars-CoV-2 disease (known as COVID-19) has become a global public health emergency. Researchers have been unveiling the transmission mechanisms and disclosing possible contributing factors. Studies have theorized plausible linkage mechanisms between air pollution exposure and COVID-19 infection and have divided the air pollution exposure into two types: long-term exposure and short-term exposure. However, present studies on impacts of short-term exposure have not reached a conclusive result and are mostly focusing on Asian and European countries. In this study, we conduct a nationwide analysis to examine the association between short-term air pollution exposure and COVID-19 infection in the United States. Daily confirmed cases, air pollution information, and meteorological factors at the county level were collected between March 1st and June 30th, 2020. A total of 806 (out of 3143) counties were included in this study, with 554 counties for PM2.5 and 670 counties for ozone (O3), which account for around 2.1 million cumulative confirmed cases, i.e., about 80% of all confirmed cases in the U.S. over the study period. A generalized additive model was applied to investigate the relationship between short-term exposure to PM2.5/O3 and COVID-19 confirmed cases. The statistically significant results indicate that, with every 10 µg/m3 increase in mean pollutant concentration, the number of daily confirmed cases increases by 9.41% (CI: 8.77%-10.04%) for PM2.5 and by 2.42% (CI: 1.56%-3.28%) for O3. The relative risks associated with short-term PM2.5 exposure remain positive after isolating the impacts of long-term exposure. The results of this study suggest that short-term exposure to air pollution, especially to PM2.5, may contribute to the spread and course of the pandemic. This finding has important implications for policymakers and the public to take preventive measures such as staying at home on polluted days while improving ventilation indoors to lower the probability of infection.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure , Humans , Particulate Matter/analysis , SARS-CoV-2 , United States/epidemiology
9.
J Am Soc Nephrol ; 32(2): 448-458, 2021 02.
Article in English | MEDLINE | ID: covidwho-1496669

ABSTRACT

BACKGROUND: Fine particulate matter (PM2.5) is an important environmental risk factor for cardiopulmonary diseases. However, the association between PM2.5 and risk of CKD remains under-recognized, especially in regions with high levels of PM2.5, such as China. METHODS: To explore the association between long-term exposure to ambient PM2.5 and CKD prevalence in China, we used data from the China National Survey of CKD, which included a representative sample of 47,204 adults. We estimated annual exposure to PM2.5 before the survey date at each participant's address, using a validated, satellite-based, spatiotemporal model with a 10 km×10 km resolution. Participants with eGFR <60 ml/min per 1.73 m2 or albuminuria were defined as having CKD. We used a logistic regression model to estimate the association and analyzed the influence of potential modifiers. RESULTS: The 2-year mean PM2.5 concentration was 57.4 µg/m3, with a range from 31.3 to 87.5 µg/m3. An increase of 10 µg/m3 in PM2.5 was positively associated with CKD prevalence (odds ratio [OR], 1.28; 95% confidence interval [CI], 1.22 to 1.35) and albuminuria (OR, 1.39; 95% CI, 1.32 to 1.47). Effect modification indicated these associations were significantly stronger in urban areas compared with rural areas, in males compared with females, in participants aged <65 years compared with participants aged ≥65 years, and in participants without comorbid diseases compared with those with comorbidities. CONCLUSIONS: These findings regarding the relationship between long-term exposure to high ambient PM2.5 levels and CKD in the general Chinese population provide important evidence for policy makers and public health practices to reduce the CKD risk posed by this pollutant.


Subject(s)
Air Pollution/adverse effects , Albuminuria/epidemiology , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Renal Insufficiency, Chronic/epidemiology , Adult , Aged , Albuminuria/diagnosis , China , Female , Glomerular Filtration Rate , Humans , Logistic Models , Male , Middle Aged , Prevalence , Renal Insufficiency, Chronic/diagnosis , Risk Factors , Surveys and Questionnaires , Time Factors
10.
Clin Infect Dis ; 73(2): e513-e522, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1493765

ABSTRACT

BACKGROUND: For pediatric pneumonia, the meteorological and air pollution indicators have been frequently investigated for their association with viral circulation but not for their impact on disease severity. METHODS: We performed a 10-year prospective, observational study in 1 hospital in Chongqing, China, to recruit children with pneumonia. Eight commonly seen respiratory viruses were tested. Autoregressive distributed lag (ADL) and random forest (RF) models were used to fit monthly detection rates of each virus at the population level and to predict the possibility of severe pneumonia at the individual level, respectively. RESULTS: Between 2009 and 2018, 6611 pediatric pneumonia patients were included, and 4846 (73.3%) tested positive for at least 1 respiratory virus. The patient median age was 9 months (interquartile range, 4‒20). ADL models demonstrated a decent fitting of detection rates of R2 > 0.7 for respiratory syncytial virus, human rhinovirus, parainfluenza virus, and human metapneumovirus. Based on the RF models, the area under the curve for host-related factors alone was 0.88 (95% confidence interval [CI], .87‒.89) and 0.86 (95% CI, .85‒.88) for meteorological and air pollution indicators alone and 0.62 (95% CI, .60‒.63) for viral infections alone. The final model indicated that 9 weather and air pollution indicators were important determinants of severe pneumonia, with a relative contribution of 62.53%, which is significantly higher than respiratory viral infections (7.36%). CONCLUSIONS: Meteorological and air pollution predictors contributed more to severe pneumonia in children than did respiratory viruses. These meteorological data could help predict times when children would be at increased risk for severe pneumonia and when interventions, such as reducing outdoor activities, may be warranted.


Subject(s)
Air Pollution , Pneumonia , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Air Pollution/adverse effects , Air Pollution/analysis , Child , China/epidemiology , Humans , Infant , Pneumonia/epidemiology , Pneumonia/etiology , Prospective Studies , Weather
11.
Sci Total Environ ; 806(Pt 3): 151286, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1487963

ABSTRACT

COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (µgm-3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Humans , Pandemics , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
13.
Environ Int ; 157: 106862, 2021 12.
Article in English | MEDLINE | ID: covidwho-1474522

ABSTRACT

BACKGROUND: Air pollution exposure has been associated with increased risk of COVID-19 incidence and mortality by ecological analyses. Few studies have investigated the specific effect of traffic-related air pollution on COVID-19 severity. OBJECTIVE: To investigate the associations of near-roadway air pollution (NRAP) exposure with COVID-19 severity and mortality using individual-level exposure and outcome data. METHODS: The retrospective cohort includes 75,010 individuals (mean age 42.5 years, 54% female, 66% Hispanic) diagnosed with COVID-19 at Kaiser Permanente Southern California between 3/1/2020-8/31/2020. NRAP exposures from both freeways and non-freeways during 1-year prior to the COVID-19 diagnosis date were estimated based on residential address history using the CALINE4 line source dispersion model. Primary outcomes include COVID-19 severity defined as COVID-19-related hospitalizations, intensive respiratory support (IRS), intensive care unit (ICU) admissions within 30 days, and mortality within 60 days after COVID-19 diagnosis. Covariates including socio-characteristics and comorbidities were adjusted for in the analysis. RESULT: One standard deviation (SD) increase in 1-year-averaged non-freeway NRAP (0.5 ppb NOx) was associated with increased odds of COVID-19-related IRS and ICU admission [OR (95% CI): 1.07 (1.01, 1.13) and 1.11 (1.04, 1.19) respectively] and increased risk of mortality (HR = 1.10, 95% CI = 1.03, 1.18). The associations of non-freeway NRAP with COVID-19 outcomes were largely independent of the effect of regional fine particulate matter and nitrogen dioxide exposures. These associations were generally consistent across age, sex, and race/ethnicity subgroups. The associations of freeway and total NRAP with COVID-19 severity and mortality were not statistically significant. CONCLUSIONS: Data from this multiethnic cohort suggested that NRAP, particularly non-freeway exposure in Southern California, may be associated with increased risk of COVID-19 severity and mortality among COVID-19 infected patients. Future studies are needed to assess the impact of emerging COVID-19 variants and chemical components from freeway and non-freeway NRAP.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19 Testing , California/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Retrospective Studies , SARS-CoV-2
14.
Lancet Planet Health ; 5(10): e671-e680, 2021 10.
Article in English | MEDLINE | ID: covidwho-1461903

ABSTRACT

BACKGROUND: Understanding how environmental factors affect SARS-CoV-2 transmission could inform global containment efforts. Despite high scientific and public interest and multiple research reports, there is currently no consensus on the association of environmental factors and SARS-CoV-2 transmission. To address this research gap, we aimed to assess the relative risk of transmission associated with weather conditions and ambient air pollution. METHODS: In this global analysis, we adjusted for the delay between infection and detection, estimated the daily reproduction number at 3739 global locations during the COVID-19 pandemic up until late April, 2020, and investigated its associations with daily local weather conditions (ie, temperature, humidity, precipitation, snowfall, moon illumination, sunlight hours, ultraviolet index, cloud cover, wind speed and direction, and pressure data) and ambient air pollution (ie, PM2·5, nitrogen dioxide, ozone, and sulphur dioxide). To account for other confounding factors, we included both location-specific fixed effects and trends, controlling for between-location differences and heterogeneities in locations' responses over time. We built confidence in our estimations through synthetic data, robustness, and sensitivity analyses, and provided year-round global projections for weather-related risk of global SARS-CoV-2 transmission. FINDINGS: Our dataset included data collected between Dec 12, 2019, and April 22, 2020. Several weather variables and ambient air pollution were associated with the spread of SARS-CoV-2 across 3739 global locations. We found a moderate, negative relationship between the estimated reproduction number and temperatures warmer than 25°C (a decrease of 3·7% [95% CI 1·9-5·4] per additional degree), a U-shaped relationship with outdoor ultraviolet exposure, and weaker positive associations with air pressure, wind speed, precipitation, diurnal temperature, sulphur dioxide, and ozone. Results were robust to multiple assumptions. Independent research building on our estimates provides strong support for the resulting projections across nations. INTERPRETATION: Warmer temperature and moderate outdoor ultraviolet exposure result in a slight reduction in the transmission of SARS-CoV-2; however, changes in weather or air pollution alone are not enough to contain the spread of SARS-CoV-2 with other factors having greater effects. FUNDING: None.


Subject(s)
Air Pollution , COVID-19 , Global Health , Weather , Air Pollution/adverse effects , COVID-19/epidemiology , COVID-19/transmission , Global Health/statistics & numerical data , Humans , Pandemics , SARS-CoV-2
15.
Environ Res ; 204(Pt A): 112020, 2022 03.
Article in English | MEDLINE | ID: covidwho-1401462

ABSTRACT

Since the rise of the Covid-19 pandemic, several researchers stated the possibility of a positive relationship between Covid-19 spread and climatic parameters. An ecological study in 12 Iranian cities using the report of daily deaths from Covid-19 (March to August 2020) and validated data on air pollutants, considering average concentrations in each city in the last year used to analyze the association between chronic exposure to air pollutants and the death rate from Covid-19 in Iran. Poisson regression models were used, with generalized additive models and adjustment variables. A significant increase of 2.7% (IC(95%) 2.6-4.4) was found in the mortality rate due to Covid-19 due to an increase of 1 µg/m3 of NO2. The results suggest an association between Covid-19 mortality and NO2 exposure. As a risk approximation associated with air pollution, more precise analysis is done. The results also show a good consistency with studies from other regions; this paper's results can be useful for the public health policymakers and decision-making to control the Covid-19 spread.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Diabetes Mellitus , Hypertension , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Comorbidity , Humans , Iran/epidemiology , Obesity/epidemiology , Pandemics , Particulate Matter/analysis , SARS-CoV-2
16.
BMJ Open Respir Res ; 8(1)2021 06.
Article in English | MEDLINE | ID: covidwho-1388519

ABSTRACT

INTRODUCTION: Almost half of all school-age children with bronchopulmonary dysplasia (BPD) have asthma-like symptoms and more suffer from lung function deficits. While air pollution and indoor respiratory irritants are known to affect high-risk populations of children, few studies have objectively evaluated environmental contributions to long-term respiratory morbidity in this population. This study aimed to examine the role of indoor environmental exposures on respiratory morbidity in children with BPD. METHODS AND ANALYSIS: The Air quality, Environment and Respiratory Ouctomes in BPD (AERO-BPD) study is a prospective, single-centre observational study that will enrol a unique cohort of 240 children with BPD and carefully characterise participants and their indoor home environmental exposures. Measures of indoor air quality constituents will assess the relationship of nitrogen dioxide (NO2), particulate matter (PM2.5), nitric oxide (NO), temperature and humidity, as well as dust concentrations of allergens, with concurrently measured respiratory symptoms and lung function.Adaptations to the research protocol due to the SARS-CoV-2 pandemic included remote home environment and participant assessments. ETHICS AND DISSEMINATION: Study protocol was approved by the Boston Children's Hospital Committee on Clinical Investigation. Dissemination will be in the form of peer-reviewed publications and participant information products. TRIAL REGISTRATION NUMBER: NCT04107701.


Subject(s)
Air Pollution/adverse effects , Bronchopulmonary Dysplasia/epidemiology , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Air Pollution, Indoor/analysis , Allergens , Asthma/epidemiology , Asthma/physiopathology , Bronchopulmonary Dysplasia/diagnosis , Bronchopulmonary Dysplasia/physiopathology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Child , Cohort Studies , Environmental Exposure/statistics & numerical data , Female , Humans , Humidity , Male , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Prospective Studies , Respiratory Function Tests/methods , SARS-CoV-2/genetics , Temperature
19.
Respirology ; 26(12): 1181-1187, 2021 12.
Article in English | MEDLINE | ID: covidwho-1378057

ABSTRACT

BACKGROUND AND OBJECTIVE: Ecological studies have suggested an association between exposure to particulate matter ≤2.5 µm (PM2.5 ) and coronavirus disease 2019 (COVID-19) severity. However, these findings are yet to be validated in individual-level studies. We aimed to determine the association of long-term PM2.5 exposure with hospitalization among individual patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We estimated the 10-year (2009-2018) PM2.5 exposure at the residential zip code of COVID-19 patients diagnosed at the University of Cincinnati healthcare system between 13 March 2020 and 30 September 2020. Logistic regression was used to determine the odds ratio (OR) and 95% CI for COVID-19 hospitalizations associated with PM2.5 , adjusting for socioeconomic characteristics and comorbidities. RESULTS: Among the 14,783 COVID-19 patients included in our study, 13.6% were hospitalized; the geometric mean (SD) PM2.5 was 10.48 (1.12) µg/m3 . In adjusted analysis, 1 µg/m3 increase in 10-year annual average PM2.5 was associated with 18% higher hospitalization (OR: 1.18, 95% CI: 1.11-1.26). Likewise, 1 µg/m3 increase in PM2.5 estimated for the year 2018 was associated with 14% higher hospitalization (OR: 1.14, 95% CI: 1.08-1.21). CONCLUSION: Long-term PM2.5 exposure is associated with increased hospitalization in COVID-19. Therefore, more stringent COVID-19 prevention measures may be needed in areas with higher PM2.5 exposure to reduce the disease morbidity and healthcare burden.


Subject(s)
Air Pollutants , Air Pollution/adverse effects , COVID-19/epidemiology , Environmental Exposure/adverse effects , Hospitalization/statistics & numerical data , Particulate Matter/adverse effects , Adult , Aged , Aged, 80 and over , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/etiology , Female , Humans , Male , Middle Aged , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Severity of Illness Index
20.
Environ Res ; 204(Pt A): 111948, 2022 03.
Article in English | MEDLINE | ID: covidwho-1372993

ABSTRACT

BACKGROUND: COVID-19 is a lung disease, and there is medical evidence that air pollution is one of the external causes of lung diseases. Fine particulate matter is one of the air pollutants that damages pulmonary tissue. The combination of the coronavirus and fine particulate matter air pollution may exacerbate the coronavirus' effect on human health. RESEARCH QUESTION: This paper considers whether the long-term concentration of fine particulate matter of different sizes changes the number of detected coronavirus infections and the number of COVID-19 fatalities in Germany. STUDY DESIGN: Data from 400 German counties for fine particulate air pollution from 2002 to 2020 are used to measure the long-term impact of air pollution. Kriging interpolation is applied to complement data gaps. With an ecological study, the correlation between average particulate matter air pollution and COVID-19 cases, as well as fatalities, are estimated with OLS regressions. Thereby, socioeconomic and demographic covariates are included. MAIN FINDINGS: An increase in the average long-term air pollution of 1 µg/m3 particulate matter PM2.5 is correlated with 199.46 (SD = 29.66) more COVID-19 cases per 100,000 inhabitants in Germany. For PM10 the respective increase is 52.38 (SD = 12.99) more cases per 100,000 inhabitants. The number of COVID-19 deaths were also positively correlated with PM2.5 and PM10 (6.18, SD = 1.44, respectively 2.11, SD = 0.71, additional COVID-19 deaths per 100,000 inhabitants). CONCLUSION: Long-term fine particulate air pollution is suspected as causing higher numbers of COVID-19 cases. Higher long-term air pollution may even increase COVID-19 death rates. We find that the results of the correlation analysis without controls are retained in a regression analysis with controls for relevant confounding factors. Nevertheless, additional epidemiological investigations are required to test the causality of particulate matter air pollution for COVID-19 cases and the severity.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...