Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957395

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Subject(s)
Alkaloids , COVID-19 , Solanaceae , Alkaloids/pharmacology , Anthocyanins , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Solanaceae/metabolism , Vegetables/metabolism , Viral Nonstructural Proteins/metabolism
2.
Phytother Res ; 36(7): 2686-2709, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1941309

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.


Subject(s)
Alkaloids , COVID-19 , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , SARS-CoV-2
3.
Comput Biol Med ; 147: 105738, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1894906

ABSTRACT

Over a span of two years ago, since the emergence of the first case of the novel coronavirus (SARS-CoV-2) in China, the pandemic has crossed borders causing serious health emergencies, immense economic crisis and impacting the daily life worldwide. Despite the discovery of numerous forms of precautionary vaccines along with other recently approved orally available drugs, yet effective antiviral therapeutics are necessarily needed to hunt this virus and its variants. Historically, naturally occurring chemicals have always been considered the primary source of beneficial medications. Considering the SARS-CoV-2 main protease (Mpro) as the duplicate key element of the viral cycle and its main target, in this paper, an extensive virtual screening for a focused chemical library of 15 batzelladine marine alkaloids, was virtually examined against SARS-CoV-2 main protease (Mpro) using an integrated set of modern computational tools including molecular docking (MDock), molecule dynamic (MD) simulations and structure-activity relationships (SARs) as well. The molecular docking predictions had disclosed four promising compounds including batzelladines H-I (8-9) and batzelladines F-G (6-7), respectively according to their prominent ligand-protein energy scores and relevant binding affinities with the (Mpro) pocket residues. The best two chemical hits, batzelladines H-I (8-9) were further investigated thermodynamically though studying their MD simulations at 100 ns, where they showed excellent stability within the accommodated (Mpro) pocket. Moreover, SARs studies imply the crucial roles of the fused tricyclic guanidinic moieties, its degree of unsaturation, position of the N-OH functionality and the length of the side chain as a spacer linking between two active sites, which disclosed fundamental structural and pharmacophoric features for efficient protein-ligand interaction. Such interesting findings are greatly highlighting further in vitro/vivo examinations regarding those marine natural products (MNPs) and their synthetic equivalents as promising antivirals.


Subject(s)
Alkaloids , COVID-19 , Alkaloids/pharmacology , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry
4.
Trials ; 23(1): 472, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1879252

ABSTRACT

BACKGROUND: COVID-19 pandemic has made the disease a major global problem by creating a significant burden on health, economic, and social status. To date, there are no effective and approved medications for this disease. Curcumin as an anti-inflammatory agent can have a positive effect on the control of COVID-19 complications. This study aimed to assess the efficacy of curcumin-piperine supplementation on clinical symptoms, duration, severity, and inflammatory factors in patients with COVID-19. METHODS: Forty-six outpatients with COVID-19 disease were randomly allocated to receive two capsules of curcumin-piperine; each capsule contained 500 mg curcumin plus 5 mg piperine or placebo for 14 days. RESULTS: Mean changes in complete blood count, liver enzymes, blood glucose levels, lipid parameters, kidney function, and c-reactive protein (CRP) were not significantly different between the two groups. There was a significant improvement in health status, including dry cough, sputum cough, ague, sore throat, weakness, muscular pain, headache, and dyspnea at week 2 in both curcumin-piperine and placebo groups (P value < 0.05); however, the improvement in weakness was more in the curcumin-piperine group than with placebo group (P value 025). CONCLUSION: The present study results showed that curcumin-piperine co-supplementation in outpatients with COVID-19 could significantly reduce weakness. However, in this study, curcumin-piperine co-supplementation could not significantly affect the other indices, including biochemical and clinical indices. TRIAL REGISTRATION: Iranian Registry of Clinical Trials IRCT20121216011763N46 . 2020-10-31.


Subject(s)
COVID-19 , Curcumin , Alkaloids , Benzodioxoles , COVID-19/drug therapy , Cough/drug therapy , Curcumin/adverse effects , Dietary Supplements , Double-Blind Method , Humans , Iran , Outpatients , Pandemics , Piperidines , Polyunsaturated Alkamides
5.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: covidwho-1874076

ABSTRACT

Introduction. Coronavirus disease 2019 (COVID-19) has caused a serious threat to public health worldwide, and there is currently no effective therapeutic strategy for treating COVID-19.Hypothesis/Gap Statement. We propose that sophocarpine (SOP) might have potential therapeutic effects on COVID-19 through inhibiting the cytokine storm and the nuclear factor NF-κB signalling pathway.Aim. The objective was to elucidate the potential mechanism of SOP against COVID-19 through a network pharmacology analysis and its experimental validation.Methodology. The BATMAN-TCM database was used to identify the therapeutic targets of SOP, while the GeneCards and DisGeNET databases were used to identify the targets related to COVID-19. A protein-protein interaction (PPI) network was constructed from the STRING and analysed using Cytoscape software. Gene ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and disease ontology (DO) enrichment analyses of the co-targets were performed using Metascape. Autodock 4.2.6 and Pymol software were applied for molecular docking. Levels of the proinflammatory cytokines IL-6, TNFα and IL-1ß were measured by ELISA, while mRNA expression levels of intercellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor A (VEGFA) and IFN gamma (IFNG) were detected by real-time quantitative reverse transcription PCR. The protein levels of the molecules involved in the NF-κB signalling pathway were validated by western blot analysis.Results. A total of 65 co-targets of SOP and COVID-19 were determined. GO and KEGG enrichment analyses suggested that SOP affected COVID-19 by regulating the IL-17 signalling pathway, TNF signalling pathway and other signalling pathways. The PPI network and molecular docking showed that p65, ICAM-1 and VEGFA were key targets of SOP against COVID-19 and the underlying mechanism was validated in A549 cells in vitro. SOP attenuated the LPS-induced production of TNF-α and IL-6 and downregulated the LPS-induced mRNA expression of ICAM-1, VEGFA and IFNG. Mechanistically, SOP pretreatment inhibited the phosphorylation of p65 and facilitated the activation of Nrf2.Conclusions. SOP has a potential therapeutic effect on COVID-19 through multiple pathways and targets, and inhibits the production of pro-inflammatory cytokines and molecules involved in the NF-κB signalling pathway.


Subject(s)
COVID-19 , Intercellular Adhesion Molecule-1 , Alkaloids , COVID-19/drug therapy , Cytokines/metabolism , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6 , Lipopolysaccharides , Molecular Docking Simulation , NF-kappa B/metabolism , RNA, Messenger , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
6.
Virol J ; 19(1): 87, 2022 05 21.
Article in English | MEDLINE | ID: covidwho-1854812

ABSTRACT

BACKGROUND: The new coronavirus (COVID-19) has been transmitted exponentially. Numerous studies have been performed in recent years that have shown the inhibitory effect of plant extracts or plant-derived compounds on the coronavirus family. In this study, we want to use systematic review and meta-analysis to answer the question, which herbal compound has been more effective? MAIN BODY: The present study is based on the guidelines for conducting meta-analyzes. An extensive search was conducted in the electronic database, and based on the inclusion and exclusion criteria, articles were selected and data screening was done. Quality control of articles was performed. Data analysis was carried out in STATA software. CONCLUSION: Due to the variety of study methods, definitive conclusions are not possible. However, in this study, we attempted to gather all the available evidence on the effect of plant compounds on SARS-COV-2 to be used for the development and use of promising antiviral agents against this virus and other coronaviruses. Trypthantrin, Sambucus extract, S. cusia extract, Boceprevir and Indigole B, dioica agglutinin urtica had a good effect on reducing the virus titer. Also among the compounds that had the greatest effect on virus inhibition, Saikosaponins B2, SaikosaponinsD, SaikosaponinsA and Phillyrin, had an acceptable selectivity index greater than 10. Andrographolide showed the highest selectivity index on SARS-COV-2. Our study confirmed insufficient data to support alkaloid compounds against SARS-COV-2, and the small number of studies that used alkaloid compounds was a limitation. It is recommended to investigate the effect of more alkaloid compounds against Corona virus.


Subject(s)
Alkaloids , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Plant Extracts/pharmacology , SARS-CoV-2
7.
J Mol Model ; 28(6): 144, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1838345

ABSTRACT

COVID-19 has recently grown to be pandemic all around the world. Therefore, efforts to find effective drugs for the treatment of COVID-19 are needed to improve humans' life quality and survival. Since the main protease (Mpro) of SARS-CoV-2 plays a crucial role in viral replication and transcription, the inhibition of this enzyme could be a promising and challenging therapeutic target to fight COVID-19. The present study aims to identify alkaloid compounds as new potential inhibitors for SARS-CoV-2 Mpro by the hybrid modeling analyses. The docking-based virtual screening method assessed a collection of alkaloids extracted from over 500 medicinal plants and sponges. In order to validate the docking process, classical molecular dynamic simulations were applied on selected ligands, and the calculation of binding free energy was performed. Based on the proper interactions with the active site of the SARS-CoV-2 Mpro, low binding energy, few side effects, and the availability in the medicinal market, two indole alkaloids were found to be potential lead compounds that may serve as therapeutic options to treat COVID-19. This study paves the way for developing natural alkaloids as stronger potent antiviral agents against the SARS-CoV-2.


Subject(s)
Alkaloids , COVID-19 , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Indole Alkaloids , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
8.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820341

ABSTRACT

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Subject(s)
Alkaloids , Antimalarials , COVID-19 , Piper nigrum , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Antimalarials/pharmacology , Benzodioxoles , Humans , Mammals , Molecular Docking Simulation , Piper nigrum/chemistry , Piperidines , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology
9.
Biochem Biophys Res Commun ; 604: 76-82, 2022 05 14.
Article in English | MEDLINE | ID: covidwho-1797136

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and seriously threatened public health and safety. Despite COVID-19 vaccines being readily popularized worldwide, targeted therapeutic agents for the treatment of this disease remain very limited. Here, we studied the inhibitory activity of the scutellarein and its methylated derivatives against SARS-CoV-2 main protease (Mpro) by the fluorescence resonance energy transfer (FRET) assay. Among all the methylated derivatives we studied, 4'-O-methylscutellarein exhibited the most promising enzyme inhibitory activity in vitro, with the half-maximal inhibitory concentration value (IC50) of 0.40 ± 0.03 µM. Additionally, the mechanism of action of the hits was further characterized through enzyme kinetic studies and molecular docking. Overall, our results implied that 4'-O-methylscutellarein could be a primary lead compound with clinical potential for the development of inhibitors against the SARS-CoV-2 Mpro.


Subject(s)
Alkaloids , Coronavirus 3C Proteases , Indoles , SARS-CoV-2 , Viral Protease Inhibitors , Alkaloids/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Indoles/pharmacology , Kinetics , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Protease Inhibitors/pharmacology
10.
J Photochem Photobiol B ; 231: 112447, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796437

ABSTRACT

Cuspareine as an antiviral alkaloid can be used in the treatment of COVID-19. In this study, we introduced the ionic liquids (ILs) concluded cuspareinium as a cation with CH3COO-, CF3COO-, and PF6 as anions. The optimized geometry, thermodynamic parameters, and reactivity descriptors were calculated with density functional theory (DFT) approach and time-dependent density functional theory (TD-DFT) using B3LYP/6-311G. In addition, the UV and IR spectra of the introduced ILs were investigated. Based on DFT calculation, the designed IL CH3COO- can be to the most suitable anions due to most solubility in the water. DFT studies displayed that all the introduced ILs have more polarity than pristine cuspareine and CH3COO--cuspareine is the most polarity due to high dipole moment. Also, the thermo- chemical data of the designed ionic liquids revealed that PF6-cuspareine is distinguished to be stable. A molecular docking study of the designed ILs with 6 LU7 protease was performed to display interactions and binding energy. Results of molecular docking displayed that CH3COO- ion liquid has the highest binding energy (- 7.20 kcal/mol) and Ala7, and Lys 5 residues are involved in an interaction. DFT and molecular docking studies of cuspareine as alkaloid based on ionic liquids can be helpful to for more pharmaceutical and biological researches of cuspareine as an antiviral agent against COVID-19.


Subject(s)
Alkaloids , COVID-19 , Ionic Liquids , Alkaloids/pharmacology , Anions/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Ionic Liquids/chemistry , Molecular Docking Simulation , Quinolines
11.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792418

ABSTRACT

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Subject(s)
Alkaloids , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Alkaloids/pharmacology , Antiviral Agents/chemistry , COVID-19/drug therapy , Dextran Sulfate , Ebolavirus/metabolism , Glycoproteins , Hemorrhagic Fever, Ebola/drug therapy , Heparin/pharmacology , Humans , SARS-CoV-2 , Virus Internalization
12.
Mar Drugs ; 20(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1725847

ABSTRACT

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Indole Alkaloids/chemistry , Piperazines/chemistry , SARS-CoV-2/enzymology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antiviral Agents/isolation & purification , Aspergillus fumigatus/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Indole Alkaloids/isolation & purification , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperazines/isolation & purification
13.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1715567

ABSTRACT

Alkaloids are nitrogen-containing compounds, biosynthesized by both marine and terrestrial organisms, often with strong biological properties [...].


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Drug Discovery , Alkaloids/isolation & purification , Aquatic Organisms/chemistry , Biological Products , Drug Discovery/methods , Plant Extracts
14.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1686898

ABSTRACT

Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Colonic Neoplasms/drug therapy , Alkaloids/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Discovery , Humans
15.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1686897

ABSTRACT

Viral infections and outbreaks have become a major concern and are one of the main causes of morbidity and mortality worldwide. The development of successful antiviral therapeutics and vaccines remains a daunting challenge. The discovery of novel antiviral agents is a public health emergency, and extraordinary efforts are underway globally to identify safe and effective treatments for different viral diseases. Alkaloids are natural phytochemicals known for their biological activities, many of which have been intensively studied for their broad-spectrum of antiviral activities against different DNA and RNA viruses. The purpose of this review was to summarize the evidence supporting the efficacy of the antiviral activity of plant alkaloids at half-maximum effective concentration (EC50) or half-maximum inhibitory concentration (IC50) below 10 µM and describe the molecular sites most often targeted by natural alkaloids acting against different virus families. This review highlights that considering the devastating effects of virus pandemics on humans, plants, and animals, the development of high efficiency and low-toxicity antiviral drugs targeting these viruses need to be developed. Furthermore, it summarizes the current research status of alkaloids as the source of antiviral drug development, their structural characteristics, and antiviral targets. Overall, the influence of alkaloids at the molecular level suggests a high degree of specificity which means they could serve as potent and safe antiviral agents waiting for evaluation and exploitation.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Virus Diseases/drug therapy , Viruses/drug effects , Alkaloids/therapeutic use , Animals , Antiviral Agents/therapeutic use , Drug Development , Drug Discovery , Humans , Virus Replication/drug effects
16.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1651076

ABSTRACT

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Subject(s)
COVID-19/drug therapy , Coronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Caspase 3/drug effects , Caspase 3/genetics , Coronavirus/metabolism , Coronavirus Infections/drug therapy , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Databases, Pharmaceutical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Interleukin-6/genetics , Lignin/chemistry , Lignin/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Mitogen-Activated Protein Kinase 14/drug effects , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 8/drug effects , Mitogen-Activated Protein Kinase 8/genetics , Molecular Docking Simulation , NF-kappa B p50 Subunit/drug effects , NF-kappa B p50 Subunit/genetics , Naphthols/chemistry , Naphthols/pharmacology , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/genetics , Protein Interaction Maps , Quercetin/chemistry , Quercetin/pharmacology , SARS-CoV-2/metabolism , Signal Transduction , Sitosterols/chemistry , Sitosterols/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
17.
Biomed Pharmacother ; 147: 112658, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1641135

ABSTRACT

The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Phytochemicals/therapeutic use , Phytotherapy , Alkaloids/therapeutic use , Benzaldehydes/therapeutic use , Benzoquinones/therapeutic use , Caffeic Acids/therapeutic use , Cinnamates/therapeutic use , Depsides/therapeutic use , Ellagic Acid/therapeutic use , Humans , Quercetin/therapeutic use , SARS-CoV-2 , Thymol/therapeutic use , Triterpenes/therapeutic use
18.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1615945

ABSTRACT

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Subject(s)
Alkaloids/chemistry , Geologic Sediments/microbiology , Isoindoles/chemistry , Streptomyces/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Isoindoles/isolation & purification , Isoindoles/metabolism , Isoindoles/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , SARS-CoV-2/isolation & purification , Streptomyces/isolation & purification , Streptomyces/metabolism
19.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611203

ABSTRACT

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Forsythia/chemistry , Monoterpenes/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Forsythia/metabolism , Fruit/chemistry , Fruit/metabolism , Glucuronidase/metabolism , Influenza A Virus, H1N1 Subtype/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/pharmacology , Rats , Respiratory Syncytial Viruses/drug effects
20.
J Nat Prod ; 85(1): 284-291, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1596477

ABSTRACT

We have previously reported that neoechinulin B (1a), a prenylated indole diketopiperazine alkaloid, shows antiviral activities against hepatitis C virus (HCV) via the inactivation of the liver X receptors (LXRs) and the resultant disruption of double-membrane vesicles. In this study, a two-step synthesis of the diketopiperazine scaffold of 1a was achieved by the base-induced coupling of 1,4-diacetyl-3-{[(tert-butyldimethylsilyl)oxy]methyl}piperazine-2,5-dione with aldehydes, followed by the treatment of the resultant coupling products with tetra-n-butylammonium fluoride. Compound 1a and its 16 derivatives 1b-q were prepared using this method. Furthermore, variecolorin H, a related alkaloid, was obtained by the acid treatment of 1a in MeOH. The antiviral evaluation of 1a and its derivatives revealed that 1a, 1c, 1d, 1h, 1j, 1l, and 1o exhibited both anti-HCV and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities. The results of this study indicate that the exomethylene moiety on the diketopiperazine ring is important for the antiviral activities. The antiviral compounds can inhibit the production of HCV and SARS-CoV-2 by inactivating LXRs.


Subject(s)
Alkaloids/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Piperazines/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Humans , Liver X Receptors/antagonists & inhibitors , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Structure-Activity Relationship , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL