Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Immunol ; 14: 1196031, 2023.
Article in English | MEDLINE | ID: covidwho-20236991

ABSTRACT

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-ß and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-ß and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.


Subject(s)
Alphacoronavirus , Coronavirus , Interferon Type I , Animals , Swine , Alphacoronavirus/genetics , Alphacoronavirus/metabolism , Coronavirus/metabolism , Endopeptidases , Interferon Type I/metabolism
2.
Virus Res ; 329: 199103, 2023 05.
Article in English | MEDLINE | ID: covidwho-2288833

ABSTRACT

A variety of swine enteric coronaviruses (SECoVs) have emerged and are prevalent in pig populations, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome (SADS)-CoV, a newly identified bat-origin CoV with zoonotic potential. Unfortunately, available traditional, inactivated and attenuated SECoV vaccines are of limited efficacy against the variants currently circulating in most pig populations. In this study, we evaluated the role of host factor heat shock protein 90 (Hsp90) as an antiviral target against SECoVs, exemplified by SADS-CoV. Pharmacological inhibition of Hsp90 diminished SADS-CoV replication significantly in porcine and human cell lines, and also decreased replication of SADS-CoV in a porcine intestinal enteroid model. Further mechanistic experiments revealed that both porcine and human isoforms of Hsp90 interact with the SADS-CoV nucleocapsid (N) protein, and inhibition of Hsp90 resulted in autophagic degradation of N protein. Moreover, we linked Hsp90 to virus-induced cellular pyroptosis, as SADS-CoV was found to trigger caspase-1/gasdermin-d-mediated pyroptotic cell death, which was mitigated by inhibition of Hsp90. Finally, we demonstrated that Hsp90 also associated with N proteins and was involved in propagation of PEDV, PDCoV and TGEV. This study thus extends our understanding of immune responses to SADS-CoV infection and offers a new potential therapeutic option against four SECoVs.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Humans , Alphacoronavirus/genetics , Antiviral Agents/pharmacology , Heat-Shock Proteins , Swine , HSP90 Heat-Shock Proteins/metabolism
3.
Front Cell Infect Microbiol ; 12: 1079297, 2022.
Article in English | MEDLINE | ID: covidwho-2288412

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Swine , Animals , Coronavirus Infections/veterinary , Alphacoronavirus/genetics , Diarrhea/veterinary , Epithelial Cells
4.
J Virol ; 97(3): e0019023, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2257677

ABSTRACT

Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. We rescued synthetic wild-type SADS-CoV using one-step assembly of a viral cDNA clone by homologous recombination in yeast. Furthermore, we characterized SADS-CoV replication in vitro and in neonatal mice. We found that SADS-CoV caused severe watery diarrhea, weight loss, and a 100% fatality rate in 7- and 14-day-old mice after intracerebral infection. We also detected SADS-CoV-specific N protein in the brain, lungs, spleen, and intestines of infected mice. Furthermore, SADS-CoV infection triggers excessive cytokine expression that encompasses a broad array of proinflammatory mediators, including interleukin 1ß (IL-1ß), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), C-X-C motif chemokine ligand 10 (CXCL10), interferon beta (IFN-ß), IFN-γ, and IFN-λ3. This study highlights the importance of identifying neonatal mice as a model for developing vaccines or antiviral drugs against SADS-CoV infection. IMPORTANCE SADS-CoV is the documented spillover of a bat coronavirus that causes severe disease in pigs. Pigs are in frequent contact with both humans and other animals and theoretically possess a greater chance, compared to many other species, of promoting cross-species viral transmission. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Animal models are an essential feature of the vaccine design toolkit. Compared with neonatal piglets, the mouse is small, making it an economical choice for animal models for SADS-CoV vaccine design. This study showed the pathology of neonatal mice infected with SADS-CoV, which should be very useful for vaccine and antiviral studies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Coronavirus , Swine Diseases , Humans , Mice , Animals , Swine , Animals, Newborn , Alphacoronavirus/genetics , Diarrhea
5.
Virol J ; 20(1): 36, 2023 02 25.
Article in English | MEDLINE | ID: covidwho-2275795

ABSTRACT

BACKGROUND: Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS: Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS: We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION: The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.


Subject(s)
Alphacoronavirus , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Alphacoronavirus/genetics , 5' Untranslated Regions , Base Sequence , Genome, Viral
6.
J Med Virol ; 95(3): e28672, 2023 03.
Article in English | MEDLINE | ID: covidwho-2288079

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered alphacoronavirus with zoonotic potential that causes diarrhea and vomiting mainly in piglets. Having emerged suddenly in 2017, the prevailing opinion is that the virus originated from HKU2, an alphacoronavirus whose primary host is bats, and at some unknown point achieved interspecies transmission via some intermediate. Here, we further explore the evolutionary history and possible cross-species transmission event for SADS-CoV. Coevolutionary analysis demonstrated that HKU2 may have achieved host switch via SADS-related (SADSr)-CoV, which was isolated from the genus Rhinolophus in 2017. SADS-CoV, HKU2, and SADSr-CoV share similar codon usage patterns and showed a lower tendency to use CpG, which may reflect a method of immune escape. The analyses of virus-host coevolution and recombination support SADSr-CoV is the direct source of SADS-CoV that may have undergone recombination events during its formation. Structure-based spike glycoprotein variance analysis revealed a more nuanced evolutionary pathway to receptor recognition for host switch. We did not find a possible positive selection site, and the dN/dS of the S gene was only 0.29, which indicates that the current SADS-CoV is slowly evolving. These results provide new insights that may help predict future cross-species transmission, and possibly surveil future zoonotic outbreaks and associated public health emergencies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Swine Diseases , Animals , Swine , Alphacoronavirus/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
7.
BMC Vet Res ; 18(1): 369, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2064800

ABSTRACT

BACKGROUND: Swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute vomiting and diarrhea in piglets, leading to significant financial losses for the pig industry. Recombinase polymerase amplification (RPA) is a rapid nucleic acid amplification technology used under constant temperature conditions. The study established a real-time reverse transcription (RT)-RPA assay for early diagnosis of SADS-CoV.  RESULTS: The detection limit of the real-time RT-RPA was 74 copies/µL of SADS-CoV genomic standard recombinant plasmid in 95% of cases. The assay was performed in less than 30 min and no cross-reactions were observed with eight other common viruses that affect swine, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudo rabies virus (PRV), swine influenza virus (SIV), seneca valley virus (SVA), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV). The coefficient of variation (C.V.) values of the two standards dilutions and three positive clinical sample ranged from 2.95% to 4.71%. A total of 72 clinical fecal samples from swine with diarrheal symptoms were analyzed with the developed RT-RPA and quantitative RT-PCR. There was 98.61% agreement between the RT-RPA and the quantitative real-time PCR results. CONCLUSIONS: These results indicated that the developed RT-RPA assay had good specificity, sensitivity, stability and repeatability. The study successfully established a broadly reactive RT-RPA assay for SADS-CoV detection.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Nucleic Acids , Swine Diseases , Alphacoronavirus/genetics , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Recombinases , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
8.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: covidwho-2006226

ABSTRACT

Bats are a major global reservoir of alphacoronaviruses (alphaCoVs) and betaCoVs. Attempts to discover the causative agents of COVID-19 and SARS have revealed horseshoe bats (Rhinolophidae) to be the most probable source of the virus. We report the first detection of bat coronaviruses (BtCoVs) in insectivorous bats in Poland and highlight SARS-related coronaviruses found in Rhinolophidae bats. The study included 503 (397 oral swabs and 106 fecal) samples collected from 20 bat species. Genetically diverse BtCoVs (n = 20) of the Alpha- and Betacoronavirus genera were found in fecal samples of two bat species. SARS-related CoVs were in 18 out of 58 lesser horseshoe bat (Rhinolophus hipposideros) samples (31%, 95% CI 20.6-43.8), and alphaCoVs were in 2 out of 55 Daubenton's bat (Myotis daubentonii) samples (3.6%, 95% CI 0.6-12.3). The overall BtCoV prevalence was 4.0% (95% CI 2.6-6.1). High identity was determined for BtCoVs isolated from European M. daubentonii and R. hipposideros bats. The detection of SARS-related and alphaCoVs in Polish bats with high phylogenetic relatedness to reference BtCoVs isolated in different European countries but from the same species confirms their high host restriction. Our data elucidate the molecular epidemiology, prevalence, and geographic distribution of coronaviruses and particularly SARS-related types in the bat population.


Subject(s)
Alphacoronavirus , COVID-19 , Chiroptera , Coronaviridae , Severe acute respiratory syndrome-related coronavirus , Alphacoronavirus/genetics , Animals , Phylogeny , Poland/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics
9.
Viruses ; 14(9)2022 08 27.
Article in English | MEDLINE | ID: covidwho-2006221

ABSTRACT

Significant efforts have been made to characterize viral diversity in bats from China. Many of these studies were prospective and focused mainly on Rhinolophus bats that could be related to zoonotic events. However, other species of bats that are part of ecosystems identified as virus diversity hotspots have not been studied in-depth. We analyzed the virome of a group of Myotis fimbriatus bats collected from the Yunnan Province during 2020. The virome of M. fimbriatus revealed the presence of families of pathogenic viruses such as Coronavirus, Astrovirus, Mastadenovirus, and Picornavirus, among others. The viral sequences identified in M. fimbriatus were characterized by significant divergence from other known viral sequences of bat origin. Complex phylogenetic landscapes implying a tendency of co-specificity and relationships with viruses from other mammals characterize these groups. The most prevalent and abundant virus in M. fimbriatus individuals was an alphacoronavirus. The genome of this virus shows evidence of recombination and is likely the product of ancestral host-switch. The close phylogenetic and ecological relationship of some species of the Myotis genus in China may have played an important role in the emergence of this alphacoronavirus.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus , Alphacoronavirus/genetics , Animals , China , Coronavirus/genetics , Ecosystem , Genome, Viral , Humans , Phylogeny , Prospective Studies , Virome/genetics
10.
J Virol ; 96(17): e0077222, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992939

ABSTRACT

Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV was first identified in diarrheal piglets in 2017. As a novel alphacoronavirus, SADS-CoV shares ~95% identity with bat alphacoronavirus HKU2. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Thus far, no effective antiviral drugs or vaccines are available to treat infections with SADS-CoV. Therefore, knowledge of the protein-coding gene set and a subcellular localization map of SADS-CoV proteins are fundamental first steps in this endeavor. Here, all SADS-CoV genes were cloned separately into Flag-tagged plasmids, and the subcellular localizations of viral proteins, with the exception of nsp11, were detected using confocal microscopy techniques. As a result, nsp1, nsp3-N, nsp4, nsp5, nsp7, nsp8, nsp9, nsp10, nsp14, and nsp15 were localized in the cytoplasm and nuclear spaces, and these viral proteins may perform specific functions in the nucleus. All structural and accessory proteins were mainly localized in the cytoplasm. NS7a and membrane protein M colocalized with the Golgi compartment, and they may regulate the assembly of SADS-CoV virions. Maturation of SADS-CoV may occur in the late endosomes, during which envelope protein E is involved in the assembly and release of the virus. In summary, the present study demonstrates for the first time the location of all the viral proteins of SADS-CoV. These fundamental studies of SADS-CoV will promote studies of basic virology of SADS-CoV and support preventive strategies for animals with infection of SADS-CoV. IMPORTANCE SADS-CoV is the first documented spillover of a bat coronavirus that causes severe diseases in domestic animals. Our study is an in-depth annotation of the newly discovered swine coronavirus SADS-CoV genome and viral protein expression. Systematic subcellular localization of SADS-CoV proteins can have dramatic significance in revealing viral protein biological functions in the subcellular locations. Furthermore, our study promote understanding the fundamental science behind the novel swine coronavirus to pave the way for treatments and cures.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Viral Proteins , Alphacoronavirus/genetics , Animals , Cell Nucleus/virology , Chiroptera , Coronavirus Infections/veterinary , Endosomes/virology , Golgi Apparatus/virology , Swine , Swine Diseases/virology , Viral Proteins/genetics
11.
Viruses ; 14(7)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1911654

ABSTRACT

Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.


Subject(s)
Alphacoronavirus , Chiroptera , Coronaviridae , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Alphacoronavirus/genetics , Animals , Betacoronavirus/genetics , Coronaviridae/genetics , Genome, Viral , Genomics , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics
12.
Transbound Emerg Dis ; 69(5): e2863-e2875, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1901853

ABSTRACT

Bat coronaviruses (Bat-CoVs) represent around 35% of all virus genomes described in bats. Brazil has one of the highest mammal species diversity, with 181 species of bats described so far. However, few Bat-CoV surveillance programmes were carried out in the country. Thus, our aim was to jevaluate the Bat-CoV diversity in the Atlantic Forest, the second biome with the highest number of bat species in Brazil. We analysed 456 oral and rectal swabs and 22 tissue samples from Atlantic Forest bats, detecting Alphacoronavirus in 44 swab samples (9.6%) targeting the RdRp gene from seven different bat species, three of which have never been described as Bat-CoV hosts. Phylogenetic analysis of the amino acid (aa) sequences coding the RdRp gene grouped the sequences obtained in our study with Bat-CoV previously detected in identical or congeneric bat species, belonging to four subgenera, with high aa identity (over 90%). The RdRp gene was also detected in three tissue samples from Diphylla ecaudata and Sturnira lilium, and the partial S gene was successfully sequenced in five tissues and swab samples of D. ecaudata. The phylogenetic analysis based on the partial S gene obtained here grouped the sequence of D. ecaudata with CoV from Desmodus rotundus previously detected in Peru and Brazil, belonging to the Amalacovirus subgenus, with aa identity ranging from 73.6% to 88.8%. Our data reinforce the wide distribution of Coronaviruses in bats from Brazil and the novelty of three bats species as Bat-CoV hosts and the co-circulation of four Alphacoronavirus subgenera in Brazil.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Coronavirus , Alphacoronavirus/genetics , Amino Acids/genetics , Animals , Brazil/epidemiology , Coronavirus/genetics , Coronavirus Infections/veterinary , Forests , Genetic Variation , Genome, Viral , Phylogeny , RNA-Dependent RNA Polymerase
13.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1815697

ABSTRACT

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Alphacoronavirus/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Coronavirus Infections/epidemiology , Swine
14.
Transbound Emerg Dis ; 69(5): e2006-e2019, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1765050

ABSTRACT

A novel swine enteric alphacoronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), related to Rhinolophus bat CoV HKU2 in the subgenus Rhinacovirus emerged in southern China in 2017, causing diarrhoea in newborn piglets, and critical questions remain about the pathogenicity, cross-species transmission and potential animal reservoirs. Our laboratory's previous research has shown that SADS-CoV can replicate in various cell types from different species, including chickens. Here, we systematically explore the susceptibility of chickens to a cell-adapted SADS-CoV strain both in vitro and in vivo. First, evidence of SADS-CoV replication in primary chicken cells, including cytopathic effects, immunofluorescence staining, growth curves and structural protein expression, was proven. Furthermore, we observed that SADS-CoV replicated in chicken embryos without causing gross lesions and that experimental infection of chicks resulted in mild respiratory symptoms. More importantly, SADS-CoV shedding and viral distribution in the lungs, spleens, small intestines and large intestines of infected chickens were confirmed by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The genomic sequence of the original SADS-CoV from the pig source sample in 2017 was determined to have nine nucleotide differences compared to the cell-adapted strain used; among these were three nonsynonymous mutations in the spike gene. These results collectively demonstrate that chickens are susceptible to SADS-CoV infection, suggesting that they are a potential animal reservoir. To our knowledge, this study provides the first experimental evidence of cross-species infection in which a mammalian alphacoronavirus is able to infect an avian species.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Cross Infection , Alphacoronavirus/genetics , Animals , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Cross Infection/veterinary , Nucleotides , Swine
15.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674829

ABSTRACT

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Subject(s)
Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral , Alphacoronavirus/classification , Animals , Caves/virology , Coronavirus Infections/virology , Evolution, Molecular , Female , Male , Phylogeny , Sequence Analysis, DNA , Sri Lanka
16.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625724

ABSTRACT

Bats are a reservoir for coronaviruses (CoVs) that periodically spill over to humans, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. A collection of 174 bat samples originating from South Dakota, Minnesota, Iowa, and Nebraska submitted for rabies virus testing due to human exposure were analyzed using a pan-coronavirus PCR. A previously partially characterized CoV, Eptesicus bat CoV, was identified in 12 (6.9%) samples by nested RT-PCR. Six near-complete genomes were determined. Genetic analysis found a high similarity between all CoV-positive samples, Rocky Mountain bat CoV 65 and alphacoronavirus HCQD-2020 recently identified in South Korea. Phylogenetic analysis of genome sequences showed EbCoV is closely related to bat CoV HKU2 and swine acute diarrhea syndrome CoV; however, topological incongruences were noted for the spike gene that was more closely related to porcine epidemic diarrhea virus. Similar to some alphaCoVs, a novel gene, ORF7, was discovered downstream of the nucleocapsid, whose protein lacked similarity to known proteins. The widespread circulation of EbCoV with similarities to bat viruses that have spilled over to swine warrants further surveillance.


Subject(s)
Alphacoronavirus/classification , Alphacoronavirus/genetics , Chiroptera/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeny , Alphacoronavirus/isolation & purification , Animals , Genome, Viral , Iowa , Midwestern United States , Minnesota , Republic of Korea , Sequence Analysis, DNA , South Dakota , Viral Zoonoses/transmission
17.
Sci Rep ; 11(1): 24145, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585802

ABSTRACT

Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , COVID-19/transmission , Chiroptera/growth & development , SARS-CoV-2/genetics , Alphacoronavirus/classification , Animals , Asia, Southeastern/epidemiology , Betacoronavirus/classification , COVID-19/epidemiology , COVID-19/virology , Cambodia/epidemiology , Chiroptera/classification , Chiroptera/virology , Epidemics/prevention & control , Evolution, Molecular , Genome, Viral/genetics , Geography , Humans , Longitudinal Studies , Male , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology , Species Specificity
18.
Viruses ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1488763

ABSTRACT

In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus Infections/virology , Coronavirus/physiology , Host Adaptation , Severe Acute Respiratory Syndrome/virology , Alphacoronavirus/genetics , Alphacoronavirus/physiology , Animals , COVID-19/transmission , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Host Specificity , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/veterinary
19.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: covidwho-1463837

ABSTRACT

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Subject(s)
Alphacoronavirus/isolation & purification , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/isolation & purification , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Animals, Domestic/virology , Animals, Wild/virology , Cats , Disease Hotspot , Female , Male , Mephitidae/virology , Mice , Mink/virology , Raccoons/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Utah/epidemiology
20.
Viruses ; 13(10)2021 10 11.
Article in English | MEDLINE | ID: covidwho-1460086

ABSTRACT

Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat is considered a source of noticeable viruses resulting in human and livestock infections, especially the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence and the conserved amino acid sequence of replicated proteins revealed that the new strain was distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction indicated that this strain formed a separated branch with other species, suggesting a new species of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic characteristics of a possible new species belonging to Alphacoronavirus.


Subject(s)
Alphacoronavirus/classification , Alphacoronavirus/genetics , Chiroptera/virology , Coronavirus Infections/veterinary , Genome, Viral/genetics , Alphacoronavirus/isolation & purification , Amino Acid Sequence/genetics , Animals , Artiodactyla/virology , Coronavirus Infections/virology , Phylogeny , Republic of Korea , Sequence Alignment , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL