Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
OMICS ; 25(6): 358-371, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243453


About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.

Epstein-Barr Virus Infections/virology , Neoplasms/virology , Papillomavirus Infections/virology , Retroviridae Infections/virology , Retroviridae/physiology , Sarcoma, Kaposi/virology , Tumor Virus Infections/virology , Alphapapillomavirus/physiology , Carcinogenesis , Cell Transformation, Viral , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Humans , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , Papillomavirus Infections/pathology , Retroviridae Infections/pathology , Sarcoma, Kaposi/pathology , Signal Transduction , Tumor Microenvironment , Tumor Virus Infections/pathology
JNCI Cancer Spectr ; 5(2): pkab011, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1123321


The current global novel coronavirus disease 2019 (COVID-19) pandemic threatens to derail the uptake of human papillomavirus (HPV) vaccination in low- and lower-middle income countries with major disruptions to routine immunization and the introduction of new vaccines delayed. This has a major impact on the World Health Organization cervical cancer elimination strategy, where it is dependent on HPV vaccination as well as cervical cancer screening and treatment. We discuss current opportunities and barriers to achieve high uptake of HPV vaccination in low- and lower-middle income countries as well as the impact of COVID-19. Implementation of 4 key recommendations for HPV vaccination in low- and lower-middle income countries is needed: increased global financial investment; improved vaccine supply and accelerated use of a single-dose schedule; education and social marketing; and adoption of universal school-based delivery. With the commitment of the global health community, the adoption of these strategies would underpin the effective elimination of cervical cancer.

Alphapapillomavirus/immunology , COVID-19/complications , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/immunology , Vaccination/statistics & numerical data , Alphapapillomavirus/physiology , COVID-19/epidemiology , COVID-19/virology , Developing Countries , Female , Humans , Immunization Programs/economics , Immunization Programs/statistics & numerical data , Pandemics , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , SARS-CoV-2/physiology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination/methods
Int J Cancer ; 148(2): 277-284, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-635339


The age-standardised incidence of cervical cancer in Europe varies widely by country (between 3 and 25/100000 women-years) in 2018. Human papillomavirus (HPV) vaccine coverage is low in countries with the highest incidence and screening performance is heterogeneous among European countries. A broad group of delegates of scientific professional societies and cancer organisations endorse the principles of the WHO call to eliminate cervical cancer as a public health problem, also in Europe. All European nations should, by 2030, reach at least 90% HPV vaccine coverage among girls by the age of 15 years and also boys, if cost-effective; they should introduce organised population-based HPV-based screening and achieve 70% of screening coverage in the target age group, providing also HPV testing on self-samples for nonscreened or underscreened women; and to manage 90% of screen-positive women. To guide member states, a group of scientific professional societies and cancer organisations engage to assist in the rollout of a series of concerted evidence-based actions. European health authorities are requested to mandate a group of experts to develop the third edition of European Guidelines for Quality Assurance of Cervical Cancer prevention based on integrated HPV vaccination and screening and to monitor the progress towards the elimination goal. The occurrence of the COVID-19 pandemic, having interrupted prevention activities temporarily, should not deviate stakeholders from this ambition. In the immediate postepidemic phase, health professionals should focus on high-risk women and adhere to cost-effective policies including self-sampling.

Alphapapillomavirus/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Public Health/methods , Uterine Cervical Neoplasms/prevention & control , Adolescent , Adult , Alphapapillomavirus/physiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Early Detection of Cancer , Europe , Female , Humans , Male , Middle Aged , Pandemics , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Public Health/standards , Public Health/statistics & numerical data , SARS-CoV-2/physiology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/immunology , Vaccination/methods , World Health Organization , Young Adult