Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 11(1): 8761, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199318

ABSTRACT

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , COVID-19/prevention & control , Oligodeoxyribonucleotides/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Aluminum Hydroxide/immunology , Animals , Antibodies, Neutralizing/metabolism , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Cricetinae , Female , Humans , Immunization , Injections, Intramuscular , Oligodeoxyribonucleotides/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Viral Load/drug effects
2.
Front Immunol ; 11: 599587, 2020.
Article in English | MEDLINE | ID: covidwho-1116675

ABSTRACT

The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT™ or Alhydrogel. CoVaccine HT™ induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralizing antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT™ can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Animals , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
3.
Chem Commun (Camb) ; 57(4): 504-507, 2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-983835

ABSTRACT

A novel STING agonist, CDGSF, ipsilaterally modified with phosphorothioate and fluorine, was synthesized. The phosphorothioate in CDGSF might be a site for covalent conjugation. Injection of CDGSF generated an immunogenic ("hot") tumor microenvironment to suppress melanoma, more efficiently than dithio CDG. In particular, immunization with SARS-CoV-2 spike protein using CDGSF as an adjuvant elicited an exceptionally high antibody titer and a robust T cell response, overcoming the drawbacks of aluminum hydroxide. These results highlighted the therapeutic potential of CDGSF for cancer immunotherapy and the adjuvant potential of the STING agonist in the SARS-CoV-2 vaccine for the first time.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Melanoma, Experimental/drug therapy , Membrane Proteins/agonists , Nucleotides, Cyclic/administration & dosage , Skin Neoplasms/drug therapy , Adjuvants, Immunologic/chemical synthesis , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/chemistry , Animals , Antibodies, Viral/biosynthesis , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/chemistry , Enzyme-Linked Immunospot Assay , Humans , Immunotherapy/methods , Interferon-gamma/biosynthesis , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Nucleotides, Cyclic/chemical synthesis , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Survival Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology , Tumor Burden/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Vaccination/methods
4.
JAMA ; 324(10): 951-960, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-911581

ABSTRACT

Importance: A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. Objective: To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. Interventions: In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 µg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 µg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). Design, Setting, and Participants: Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. Main Outcomes and Measures: The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. Conclusions and Relevance: In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000031809.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/adverse effects , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Dose-Response Relationship, Immunologic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Pneumonia, Viral/immunology , Propiolactone , SARS-CoV-2 , Vaccines, Inactivated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
5.
Vaccine ; 38(47): 7533-7541, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-779734

ABSTRACT

We developed a severe acute respiratory syndrome (SARS) subunit recombinant protein vaccine candidate based on a high-yielding, yeast-engineered, receptor-binding domain (RBD219-N1) of the SARS beta-coronavirus (SARS-CoV) spike (S) protein. When formulated with Alhydrogel®, RBD219-N1 induced high levels of neutralizing antibodies against both pseudotyped virus and a clinical (mouse-adapted) isolate of SARS-CoV. Here, we report that mice immunized with RBD219-N1/Alhydrogel® were fully protected from lethal SARS-CoV challenge (0% mortality), compared to ~30% mortality in mice immunized with the SARS S protein formulated with Alhydrogel®, and 100% mortality in negative controls. An RBD219-N1 formulation with Alhydrogel® was also superior to the S protein, unadjuvanted RBD, and AddaVax (MF59-like adjuvant)-formulated RBD in inducing specific antibodies and preventing cellular infiltrates in the lungs upon SARS-CoV challenge. Specifically, a formulation with a 1:25 ratio of RBD219-N1 to Alhydrogel® provided high neutralizing antibody titers, 100% protection with non-detectable viral loads with minimal or no eosinophilic pulmonary infiltrates. As a result, this vaccine formulation is under consideration for further development against SARS-CoV and potentially other emerging and re-emerging beta-CoVs such as SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Aluminum Hydroxide/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Protein Domains/immunology , Recombinant Proteins/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL