Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Am J Respir Crit Care Med ; 204(9): 1024-1034, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1495777

ABSTRACT

Rationale: ACE2 (angiotensin-converting enzyme 2), the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is expressed in type 2 alveolar epithelial cells (AT2) that may play key roles in postinjury repair. An imbalance between ACE2 and ACE has also been hypothesized to contribute to lung injury. Objectives: To characterize the expression and distribution of ACE2 and ACE and to compare AT2 with endothelial cell expression in coronavirus disease (COVID-19)-related or -unrelated acute respiratory distress syndrome (ARDS) and controls. Methods: Lung tissue stainings (using multiplex immunofluorescence) and serum concentrations of ACEs were determined retrospectively in two different cohorts of patients. AT2 and endothelial cells were stained in lung tissue for ProSPC (pro-surfactant protein C) and CD31, respectively. Measurements and Main Results: Pulmonary ACE2 expression was increased in patients with COVID-19-related and -unrelated ARDS (0.06% of tissue area and 0.12% vs. 0.006% for control subjects; P = 0.013 and P < 0.0001, respectively). ACE2 was upregulated in endothelial cells (0.32% and 0.53% vs. 0.01%; P = 0.009 and P < 0.0001) but not in AT2 cells (0.13% and 0.08% vs. 0.03%; P = 0.94 and P = 0.44). Pulmonary expression of ACE was decreased in both COVID-19-related and -unrelated ARDS (P = 0.057 and P = 0.032). Similar increases in ACE2 and decreases in ACE were observed in sera of COVID-19 (P = 0.0054 and P < 0.0001) and non-COVID-19 ARDS (P < 0.0001 and P = 0.016). In addition, AT2 cells were decreased in patients with COVID-19-related ARDS compared with COVID-19-unrelated ARDS (1.395% vs. 2.94%, P = 0.0033). Conclusions: ACE2 is upregulated in lung tissue and serum of both COVID-19-related and -unrelated ARDS, whereas a loss of AT2 cells is selectively observed in COVID-19-related ARDS.


Subject(s)
Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Peptidyl-Dipeptidase A/metabolism , Respiratory Distress Syndrome/metabolism , Adult , Aged , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/physiopathology , Case-Control Studies , Female , Humans , Immunohistochemistry , Logistic Models , Male , Middle Aged , Proportional Hazards Models , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Up-Regulation
2.
J Toxicol Sci ; 46(9): 425-435, 2021.
Article in English | MEDLINE | ID: covidwho-1389030

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Bleomycin/toxicity , Cell Differentiation , Induced Pluripotent Stem Cells/drug effects , SARS-CoV-2/drug effects , Toxicity Tests , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/drug therapy , Cell Line , Cell Survival/drug effects , Host-Pathogen Interactions , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phenotype , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Virus Replication/drug effects
5.
Cell Stress Chaperones ; 26(5): 859-868, 2021 09.
Article in English | MEDLINE | ID: covidwho-1353732

ABSTRACT

Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Endoplasmic Reticulum Stress , Heat-Shock Proteins/analysis , Receptors, Coronavirus/analysis , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Autopsy , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , Host-Pathogen Interactions , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Male , Middle Aged , Proteostasis , Up-Regulation , Young Adult
6.
Sci Rep ; 11(1): 16212, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351976

ABSTRACT

During 2020, understanding the molecular mechanism of SARS-CoV-2 infection (the cause of COVID-19) became a scientific priority due to the devastating effects of the COVID-19. Many researchers have studied the effect of this viral infection on lung epithelial transcriptomes and deposited data in public repositories. Comprehensive analysis of such data could pave the way for development of efficient vaccines and effective drugs. In the current study, we obtained high-throughput gene expression data associated with human lung epithelial cells infected with respiratory viruses such as SARS-CoV-2, SARS, H1N1, avian influenza, rhinovirus and Dhori, then performed comparative transcriptome analysis to identify SARS-CoV-2 exclusive genes. The analysis yielded seven SARS-CoV-2 specific genes including CSF2 [GM-CSF] (colony-stimulating factor 2) and calcium-binding proteins (such as S100A8 and S100A9), which are known to be involved in respiratory diseases. The analyses showed that genes involved in inflammation are commonly altered by infection of SARS-CoV-2 and influenza viruses. Furthermore, results of protein-protein interaction analyses were consistent with a functional role of CSF2 and S100A9 in COVID-19 disease. In conclusion, our analysis revealed cellular genes associated with SARS-CoV-2 infection of the human lung epithelium; these are potential therapeutic targets.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/genetics , Transcriptome , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/virology , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , SARS-CoV-2/pathogenicity
7.
Theranostics ; 11(16): 7970-7983, 2021.
Article in English | MEDLINE | ID: covidwho-1337804

ABSTRACT

The novel ß-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Dioxygenases/metabolism , Histone Demethylases/metabolism , Neuropilin-1/metabolism , Nuclear Proteins/metabolism , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Alveolar Epithelial Cells/metabolism , Animals , COVID-19/epidemiology , Cathepsins/metabolism , Cell Line , Cells, Cultured , Dioxygenases/biosynthesis , Dioxygenases/genetics , Environmental Exposure , Histone Demethylases/biosynthesis , Histone Demethylases/genetics , Histones/metabolism , Humans , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Pandemics , Rats , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
8.
Front Immunol ; 12: 660632, 2021.
Article in English | MEDLINE | ID: covidwho-1325522

ABSTRACT

The novel SARS-CoV-2virus that caused the disease COVID-19 is currently a pandemic worldwide. The virus requires an alveolar type-2 pneumocyte in the host to initiate its life cycle. The viral S1 spike protein helps in the attachment of the virus on toACE-2 receptors present on type-2 pneumocytes, and the S2 spike protein helps in the fusion of the viral membrane with the host membrane. Fusion of the SARS-CoV-2virus and host membrane is followed by entry of viral RNA into the host cells which is directly translated into the replicase-transcriptase complex (RTC) following viral RNA and structural protein syntheses. As the virus replicates within type-2 pneumocytes, the host immune system is activated and alveolar macrophages start secreting cytokines and chemokines, acting as an inflammatory mediator, and chemotactic neutrophils, monocytes, natural NK cells, and CD8+ T cells initiate the local phagocytosis of infected cells. It is not the virus that kills COVID-19 patients; instead, the aberrant host immune response kills them. Modifying the response from the host immune system could reduce the high mortality due to SARS-CoV-2 infection. The present study examines the viral life cycle intype-2 pneumocytes and resultant host immune response along with possible therapeutic targets.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunomodulation , SARS-CoV-2/pathogenicity , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , SARS-CoV-2/physiology
9.
Front Immunol ; 12: 648815, 2021.
Article in English | MEDLINE | ID: covidwho-1325521

ABSTRACT

Multiple lines of evidence have demonstrated that cigarette smoke or Chronic Obstructive Pulmonary Disease upregulates angiotensin-converting enzyme 2, the cellular receptor for the entry of the severe acute respiratory syndrome coronavirus 2, which predisposes individuals to develop severe Coronavirus disease 2019. The reason for this observation is unknown. We recently reported that the loss of function of Miz1 in the lung epithelium in mice leads to a spontaneous COPD-like phenotype, associated with upregulation of angiotensin-converting enzyme 2. We also reported that cigarette smoke exposure downregulates Miz1 in lung epithelial cells and in mice, and Miz1 is also downregulated in the lungs of COPD patients. Here, we provide further evidence that Miz1 directly binds to and represses the promoter of angiotensin-converting enzyme 2 in mouse and human lung epithelial cells. Our data provide a potential molecular mechanism for the upregulation of angiotensin-converting enzyme 2 observed in smokers and COPD patients, with implication in severe Coronavirus disease 2019.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Kruppel-Like Transcription Factors/metabolism , Receptors, Virus/genetics , Transcription, Genetic , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , BTB-POZ Domain , Cell Line , Cigarette Smoking/adverse effects , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/genetics , Mice , Promoter Regions, Genetic , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Transcription, Genetic/drug effects , Tumor Necrosis Factors/pharmacology , Virus Internalization
10.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1323266

ABSTRACT

Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air-liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.


Subject(s)
Airway Remodeling/drug effects , Alveolar Epithelial Cells/drug effects , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Differentiation/drug effects , Cells, Cultured , Cigarette Smoking/metabolism , Epithelial Cells/drug effects , Humans , Neoplasms, Basal Cell/metabolism , Primary Cell Culture , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Smoke , Smoking/adverse effects , Smoking/metabolism
11.
Nat Med ; 27(3): 546-559, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319033

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
12.
Nat Commun ; 12(1): 4314, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1310804

ABSTRACT

Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection.


Subject(s)
Lung Diseases/genetics , SARS-CoV-2/physiology , Transcriptome , Virus Internalization , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , Chronic Disease , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Immunity, Innate/genetics , Inflammation/genetics , Lung/metabolism , Lung/pathology , Lung Diseases/pathology , SARS-CoV-2/pathogenicity , Virus Replication/genetics
14.
Tissue Barriers ; 9(4): 1937013, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1298924

ABSTRACT

Blood-gas barrier (BGB) or alveolar-capillary barrier is the primary tissue barrier affected by coronavirus disease 2019 (COVID-19). Comprising alveolar epithelial cells (AECs), endothelial cells (ECs) and the extracellular matrix (ECM) in between, the BGB is damaged following the action of multiple pro-inflammatory cytokines during acute inflammation. The infection of AECs and ECs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen behind COVID-19, triggers an inflammatory response at the BGB, inducing the release of interleukin 1 (IL-1), IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß), high mobility group box 1 (HMGB1), matrix metalloproteinases (MMPs), intercellular adhesion molecule-1 (ICAM-1) and platelet activating factor (PAF). The end result is the disassembly of adherens junctions (AJs) and tight junctions (TJs) in both AECs and ECs, AEC hyperplasia, EC pyroptosis, ECM remodeling and deposition of fibrin clots in the alveolar capillaries, leading to disintegration and thickening of the BGB, and ultimately, hypoxia. This commentary seeks to provide a brief account of how the BGB might become affected in COVID-19.


Subject(s)
Blood-Air Barrier/metabolism , COVID-19/metabolism , Pulmonary Gas Exchange , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Blood-Air Barrier/pathology , COVID-19/pathology , Humans , Microvessels/metabolism , Microvessels/pathology
15.
Tissue Barriers ; 9(4): 1929787, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1276097

ABSTRACT

Endothelial barrier dysfunction (EBD) is the hallmark of Acute Respiratory Distress Syndrome (ARDS), a potentially lethal respiratory disorder associated with the COVID-19 - related deaths. Herein, we employed a cecal ligation and puncture (CLP) murine model of sepsis, to evaluate the effects of sepsis-induced EBD in the expression of the never in mitosis A (NIMA)-related kinases (NEKs). Members of that family of kinases regulate the activity and expression of the tumor suppressor P53, previously shown to modulate the actin cytoskeleton remodeling. Our results introduce the induction of NEK2, NEK3, NEK4, NEK7, and NEK9 in a CLP model of sepsis. Hence, we suggest that NEKs are involved in inflammatory processes and are holding the potential to serve as novel therapeutic targets for pathologies related to EBD, including ARDS and sepsis. Further studies will delineate the underlying molecular events and their interrelations with P53.


Subject(s)
Lung/metabolism , NIMA-Related Kinases/metabolism , Sepsis/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , NIMA-Related Kinases/genetics , Tumor Suppressor Protein p53/metabolism
16.
Cell Signal ; 85: 110064, 2021 09.
Article in English | MEDLINE | ID: covidwho-1272329

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019, it binds to angiotensin-converting enzyme 2 (ACE2) to enter into human cells. The expression level of ACE2 potentially determine the susceptibility and severity of COVID-19, it is thus of importance to understand the regulatory mechanism of ACE2 expression. Tripartite motif containing 28 (TRIM28) is known to be involved in multiple processes including antiviral restriction, endogenous retrovirus latency and immune response, it is recently reported to be co-expressed with SARS-CoV-2 receptor in type II pneumocytes; however, the roles of TRIM28 in ACE2 expression and SARS-CoV-2 cell entry remain unclear. This study showed that knockdown of TRIM28 induces ACE2 expression and increases pseudotyped SARS-CoV-2 cell entry of A549 cells and primary pulmonary alveolar epithelial cells (PAEpiCs). In a co-culture model of NK cells and lung epithelial cells, our results demonstrated that NK cells inhibit TRIM28 and promote ACE2 expression in lung epithelial cells, which was partially reversed by depletion of interleukin-2 and blocking of granzyme B in the co-culture medium. Furthermore, TRIM28 knockdown enhanced interferon-γ (IFN-γ)- induced ACE2 expression through a mechanism involving upregulating IFN-γ receptor 2 (IFNGR2) in both A549 and PAEpiCs. The upregulated ACE2 induced by TRIM28 knockdown and co-culture of NK cells was partially reversed by dexamethasone in A549 cells. Our study identified TRIM28 as a novel regulator of ACE2 expression and SARS-CoV-2 cell entry.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Antiviral Agents/pharmacology , SARS-CoV-2/pathogenicity , Tripartite Motif-Containing Protein 28/immunology , Virus Internalization/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Lung/metabolism , Lung/virology , Peptidyl-Dipeptidase A/metabolism , Tripartite Motif-Containing Protein 28/drug effects
17.
Sci Rep ; 11(1): 12324, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265975

ABSTRACT

The pro-homeostatic lipid mediators elovanoids (ELVs) attenuate cell binding and entrance of the SARS-CoV-2 receptor-binding domain (RBD) as well as of the SARS-CoV-2 virus in human primary alveoli cells in culture. We uncovered that very-long-chain polyunsaturated fatty acid precursors (VLC-PUFA, n-3) activate ELV biosynthesis in lung cells. Both ELVs and their precursors reduce the binding to RBD. ELVs downregulate angiotensin-converting enzyme 2 (ACE2) and enhance the expression of a set of protective proteins hindering cell surface virus binding and upregulating defensive proteins against lung damage. In addition, ELVs and their precursors decreased the signal of spike (S) protein found in SARS-CoV-2 infected cells, suggesting that the lipids curb viral infection. These findings open avenues for potential preventive and disease-modifiable therapeutic approaches for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Virus Internalization/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , Cells, Cultured , Humans , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
19.
Am J Respir Cell Mol Biol ; 64(6): 677-686, 2021 06.
Article in English | MEDLINE | ID: covidwho-1259048

ABSTRACT

There is an urgent need for new drugs for patients with acute respiratory distress syndrome (ARDS), including those with coronavirus disease (COVID-19). ARDS in influenza-infected mice is associated with reduced concentrations of liponucleotides (essential precursors for de novo phospholipid synthesis) in alveolar type II (ATII) epithelial cells. Because surfactant phospholipid synthesis is a primary function of ATII cells, we hypothesized that disrupting this process could contribute significantly to the pathogenesis of influenza-induced ARDS. The goal of this study was to determine whether parenteral liponucleotide supplementation can attenuate ARDS. C57BL/6 mice inoculated intranasally with 10,000 plaque-forming units/mouse of H1N1 influenza A/WSN/33 virus were treated with CDP (cytidine 5'-diphospho)-choline (100 µg/mouse i.p.) ± CDP -diacylglycerol 16:0/16:0 (10 µg/mouse i.p.) once daily from 1 to 5 days after inoculation (to model postexposure influenza prophylaxis) or as a single dose on Day 5 (to model treatment of patients with ongoing influenza-induced ARDS). Daily postexposure prophylaxis with CDP-choline attenuated influenza-induced hypoxemia, pulmonary edema, alterations in lung mechanics, impairment of alveolar fluid clearance, and pulmonary inflammation without altering viral replication. These effects were not recapitulated by the daily administration of CTP (cytidine triphosphate) and/or choline. Daily coadministration of CDP-diacylglycerol significantly enhanced the beneficial effects of CDP-choline and also modified the ATII cell lipidome, reversing the infection-induced decrease in phosphatidylcholine and increasing concentrations of most other lipid classes in ATII cells. Single-dose treatment with both liponucleotides at 5 days after inoculation also attenuated hypoxemia, altered lung mechanics, and inflammation. Overall, our data show that liponucleotides act rapidly to reduce disease severity in mice with severe influenza-induced ARDS.


Subject(s)
Alveolar Epithelial Cells/metabolism , Cytidine Diphosphate Choline/pharmacology , Cytidine Diphosphate Diglycerides/pharmacology , Influenza A Virus, H1N1 Subtype/metabolism , Orthomyxoviridae Infections/drug therapy , Respiratory Distress Syndrome/prevention & control , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/drug therapy , COVID-19/pathology , Mice , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , SARS-CoV-2/metabolism
20.
Cell Rep ; 35(10): 109218, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1233382

ABSTRACT

Although the main cellular target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be alveolar cells, the absence of their tractable culture system precludes the development of a clinically relevant SARS-CoV-2 infection model. Here, we establish an efficient human alveolosphere culture method and sphere-based drug testing platform for SARS-CoV-2. Alveolospheres exhibit indolent growth in a Wnt- and R-spondin-dependent manner. Gene expression, immunofluorescence, and electron microscopy analyses reveal the presence of alveolar cells in alveolospheres. Alveolospheres express ACE2 and allow SARS-CoV-2 to propagate nearly 100,000-fold in 3 days of infection. Whereas lopinavir and nelfinavir, protease inhibitors used for the treatment of human immunodeficiency virus (HIV) infection, have a modest anti-viral effect on SARS-CoV-2, remdesivir, a nucleotide prodrug, shows an anti-viral effect at the concentration comparable with the circulating drug level. These results demonstrate the validity of the alveolosphere culture system for the development of therapeutic agents to combat SARS-CoV-2.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Evaluation, Preclinical , SARS-CoV-2/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Host-Pathogen Interactions , Humans , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Spheroids, Cellular , Time Factors , Virus Replication/drug effects , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...