Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
EBioMedicine ; 57: 102833, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-613483

ABSTRACT

BACKGROUND: The novel coronavirus pneumonia COVID-19 caused by SARS-CoV-2 infection could lead to a series of clinical symptoms and severe illnesses, including acute respiratory distress syndrome (ARDS) and fatal organ failure. We report the fundamental pathological investigation in the lungs and other organs of fatal cases for the mechanistic understanding of severe COVID-19 and the development of specific therapy in these cases. METHODS: The autopsy and pathological investigations of specimens were performed on bodies of two deceased cases with COVID-19. Gross anatomy and histological investigation by Hematoxylin and eosin (HE) stained were reviewed on each patient. Alcian blue/periodic acid-Schiff (AB-PAS) staining and Masson staining were performed for the examinations of mucus, fibrin and collagen fiber in lung tissues. Immunohistochemical staining was performed on the slides of lung tissues from two patients. Real-time PCR was performed to detect the infection of SARS-CoV-2. Flow cytometry analyses were performed to detect the direct binding of S protein and the expression of ACE2 on the cell surface of macrophages. FINDINGS: The main pathological features in lungs included extensive impairment of type I alveolar epithelial cells and atypical hyperplasia of type II alveolar cells, with formation of hyaline membrane, focal hemorrhage, exudation and pulmonary edema, and pulmonary consolidation. The mucous plug with fibrinous exudate in the alveoli and the dysfunction of alveolar macrophages were characteristic abnormalities. The type II alveolar epithelial cells and macrophages in alveoli and pulmonary hilum lymphoid tissue were infected by SARS-CoV-2. S protein of SARS-CoV-2 directly bound to the macrophage via the S-protein-ACE2 interaction. INTERPRETATION: Infection of alveolar macrophage by SARS-CoV-2 might be drivers of the "cytokine storm", which might result in damages in pulmonary tissues, heart and lung, and lead to the failure of multiple organs . FUNDING: Shanghai Guangci Translational Medical Research Development Foundation, Shanghai, China.


Subject(s)
Alveolar Epithelial Cells/pathology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Lung/pathology , Macrophages, Alveolar/pathology , Pneumonia, Viral/pathology , Autopsy , Betacoronavirus , China , Coronavirus Infections/mortality , Cytokine Release Syndrome/mortality , Cytokines/blood , Cytokines/metabolism , Female , Humans , Hyperplasia/pathology , Male , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/mortality , Spike Glycoprotein, Coronavirus/metabolism
2.
Science ; 369(6504): 712-717, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-594812

ABSTRACT

Excessive cytokine signaling frequently exacerbates lung tissue damage during respiratory viral infection. Type I (IFN-α and IFN-ß) and III (IFN-λ) interferons are host-produced antiviral cytokines. Prolonged IFN-α and IFN-ß responses can lead to harmful proinflammatory effects, whereas IFN-λ mainly signals in epithelia, thereby inducing localized antiviral immunity. In this work, we show that IFN signaling interferes with lung repair during influenza recovery in mice, with IFN-λ driving these effects most potently. IFN-induced protein p53 directly reduces epithelial proliferation and differentiation, which increases disease severity and susceptibility to bacterial superinfections. Thus, excessive or prolonged IFN production aggravates viral infection by impairing lung epithelial regeneration. Timing and duration are therefore critical parameters of endogenous IFN action and should be considered carefully for IFN therapeutic strategies against viral infections such as influenza and coronavirus disease 2019 (COVID-19).


Subject(s)
Alveolar Epithelial Cells/pathology , Cytokines/metabolism , Interferon Type I/metabolism , Interferons/metabolism , Lung/pathology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Alveolar Epithelial Cells/immunology , Animals , Apoptosis , Bronchoalveolar Lavage Fluid/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/administration & dosage , Cytokines/immunology , Female , Influenza A Virus, H3N2 Subtype , Interferon Type I/administration & dosage , Interferon Type I/pharmacology , Interferon-alpha/administration & dosage , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Interferon-beta/administration & dosage , Interferon-beta/metabolism , Interferon-beta/pharmacology , Interferons/administration & dosage , Interferons/pharmacology , Male , Mice , Orthomyxoviridae Infections/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
3.
Int J Legal Med ; 134(4): 1285-1290, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-544132

ABSTRACT

Forensic investigations generally contain extensive morphological examinations to accurately diagnose the cause of death. Thus, the appearance of a new disease often creates emerging challenges in morphological examinations due to the lack of available data from autopsy- or biopsy-based research. Since late December 2019, an outbreak of a novel seventh coronavirus disease has been reported in China caused by "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). On March 11, 2020, the new clinical condition COVID-19 (Corona-Virus-Disease-19) was declared a pandemic by the World Health Organization (WHO). Patients with COVID-19 mainly have a mild disease course, but severe disease onset might result in death due to proceeded lung injury with massive alveolar damage and progressive respiratory failure. However, the detailed mechanisms that cause organ injury still remain unclear. We investigated the morphological findings of a COVID-19 patient who died during self-isolation. Pathologic examination revealed massive bilateral alveolar damage, indicating early-phase "acute respiratory distress syndrome" (ARDS). This case emphasizes the possibility of a rapid severe disease onset in previously mild clinical condition and highlights the necessity of a complete autopsy to gain a better understanding of the pathophysiological changes in SARS-CoV-2 infections.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Lung/pathology , Pneumonia, Viral/pathology , Alveolar Epithelial Cells/pathology , Autopsy , Cough/virology , Diabetes Mellitus, Type 2 , Fever/virology , Fibrin/metabolism , Fibrosis/pathology , Humans , Hyperplasia/pathology , Hypertension , Lung/metabolism , Lymphocytes/pathology , Macrophages/pathology , Male , Megakaryocytes/pathology , Metaplasia/pathology , Middle Aged , Neutrophils/pathology , Pandemics , Quarantine , Tachycardia/virology , Thrombosis/pathology
4.
Int J Legal Med ; 134(4): 1275-1284, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-526787

ABSTRACT

Autopsies of deceased with a confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can provide important insights into the novel disease and its course. Furthermore, autopsies are essential for the correct statistical recording of the coronavirus disease 2019 (COVID-19) deaths. In the northern German Federal State of Hamburg, all deaths of Hamburg citizens with ante- or postmortem PCR-confirmed SARS-CoV-2 infection have been autopsied since the outbreak of the pandemic in Germany. Our evaluation provides a systematic overview of the first 80 consecutive full autopsies. A proposal for the categorisation of deaths with SARS-CoV-2 infection is presented (category 1: definite COVID-19 death; category 2: probable COVID-19 death; category 3: possible COVID-19 death with an equal alternative cause of death; category 4: SARS-CoV-2 detection with cause of death not associated to COVID-19). In six cases, SARS-CoV-2 infection was diagnosed postmortem by a positive PCR test in a nasopharyngeal or lung tissue swab. In the other 74 cases, SARS-CoV-2 infection had already been known antemortem. The deceased were aged between 52 and 96 years (average 79.2 years, median 82.4 years). In the study cohort, 34 deceased were female (38%) and 46 male (62%). Overall, 38% of the deceased were overweight or obese. All deceased, except for two women, in whom no significant pre-existing conditions were found autoptically, had relevant comorbidities (in descending order of frequency): (1) diseases of the cardiovascular system, (2) lung diseases, (3) central nervous system diseases, (4) kidney diseases, and (5) diabetes mellitus. A total of 76 cases (95%) were classified as COVID-19 deaths, corresponding to categories 1-3. Four deaths (5%) were defined as non-COVID-19 deaths with virus-independent causes of death. In eight cases, pneumonia was combined with a fulminant pulmonary artery embolism. Peripheral pulmonary artery embolisms were found in nine other cases. Overall, deep vein thrombosis has been found in 40% of the cases. This study provides the largest overview of autopsies of SARS-CoV-2-infected patients presented so far.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Lung/pathology , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Age Distribution , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Autopsy , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Comorbidity , Cross Infection/mortality , Exudates and Transudates , Female , Fibroblasts/pathology , Fibrosis/pathology , Germany/epidemiology , Giant Cells/pathology , Humans , Male , Megakaryocytes/pathology , Middle Aged , Nursing Homes/statistics & numerical data , Organ Size , Overweight/epidemiology , Pandemics , Polymerase Chain Reaction , Pulmonary Embolism/pathology , Residential Facilities/statistics & numerical data , Sex Distribution , Travel-Related Illness , Venous Thrombosis/pathology
5.
Emerg Infect Dis ; 26(9)2020 09.
Article in English | MEDLINE | ID: covidwho-274292

ABSTRACT

An autopsy of a patient in Japan with coronavirus disease indicated pneumonia lung pathology, manifested as diffuse alveolar damage. We detected severe acute respiratory syndrome coronavirus 2 antigen in alveolar epithelial cells and macrophages. Coronavirus disease is essentially a lower respiratory tract disease characterized by direct viral injury of alveolar epithelial cells.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Autopsy , Coronavirus Infections/virology , Female , Humans , Immunohistochemistry , Japan , Lung/pathology , Lung/virology , Pandemics , Pneumonia, Viral/virology
6.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: covidwho-261141

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , Viral Load , Weight Loss
7.
Antioxid Redox Signal ; 33(2): 59-65, 2020 07 10.
Article in English | MEDLINE | ID: covidwho-108750

ABSTRACT

Human lungs single-cell RNA sequencing data from healthy donors (elderly and young; GEO accession no. GSE122960) were analyzed to isolate and specifically study gene expression in alveolar type II cells. Colocalization of angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 enables severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) to enter the cells. Expression levels of these genes in the alveolar type II cells of elderly and young patients were comparable and, therefore, do not seem to be responsible for worse outcomes observed in coronavirus disease 2019 (COVID-19) affected elderly. In cells from the elderly, 263 genes were downregulated and 95 upregulated. Superoxide dismutase 3 (SOD3) was identified as the top-ranked gene that was most downregulated in the elderly. Other redox-active genes that were also downregulated in cells from the elderly included activating transcription factor 4 (ATF4) and metallothionein 2A (M2TA). ATF4 is an endoplasmic reticulum stress sensor that defends lungs via induction of heme oxygenase 1. The study of downstream factors known to be induced by ATF4, according to Ingenuity Pathway Analysis™, identified 24 candidates. Twenty-one of these were significantly downregulated in the cells from the elderly. These downregulated candidates were subjected to enrichment using the Reactome Database identifying that in the elderly, the ability to respond to heme deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum stress is significantly compromised. SOD3-based therapeutic strategies have provided beneficial results in treating lung disorders including fibrosis. The findings of this study propose the hypotheses that lung-specific delivery of SOD3/ATF4-related antioxidants will work in synergy with promising antiviral drugs such as remdesivir to further improve COVID-19 outcomes in the elderly.


Subject(s)
Activating Transcription Factor 4/genetics , Coronavirus Infections/genetics , Lung/metabolism , Pneumonia, Viral/genetics , Superoxide Dismutase/genetics , Adult , Aged , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Antioxidants/therapeutic use , Betacoronavirus/pathogenicity , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Gene Expression Regulation/genetics , Heme Oxygenase-1/genetics , Humans , Lung/pathology , Lung/virology , Male , Metallothionein/genetics , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL