Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add filters

Document Type
Year range
1.
Int Immunopharmacol ; 95: 107522, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1385749

ABSTRACT

BACKGROUND: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. METHODS: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93% were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. RESULTS: 380 patients were randomly allocated into Favipiravir (193) and Lopinavir/Ritonavir (187) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days [SD = 6] in the Favipiravir and 8.1 [SD = 6.5] days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 - 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) CONCLUSION: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay.


Subject(s)
Amides/administration & dosage , Amides/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/drug therapy , Pyrazines/administration & dosage , Pyrazines/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Intubation , Kaplan-Meier Estimate , Length of Stay , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Middle Aged , Oxygen/blood , Ritonavir/administration & dosage , Ritonavir/adverse effects , Severity of Illness Index , Treatment Outcome , Young Adult
2.
PLoS Negl Trop Dis ; 15(7): e0009553, 2021 07.
Article in English | MEDLINE | ID: covidwho-1360646

ABSTRACT

BACKGROUND: Jamestown Canyon virus (JCV) is a mosquito-borne orthobunyavirus that causes acute febrile illness, meningitis, and meningoencephalitis, primarily in North American adults. Currently, there are no available vaccines or specific treatments against JCV infections. METHODOLOGY/PRINCIPAL FINDINGS: The antiviral efficacy of favipiravir (FPV) against JCV infection was evaluated in vitro and in vivo in comparison with that of ribavirin (RBV) and 2'-fluoro-2'-deoxycytidine (2'-FdC). The in vitro inhibitory effect of these drugs on JCV replication was evaluated in Vero and Neuro-2a (N2A) cells. The efficacy of FPV in the treatment of JCV infection in vivo was evaluated in C57BL/6J mice inoculated intracerebrally with JCV, as per the survival, viral titers in the brain, and viral RNA load in the blood. The 90% inhibitory concentrations (IC90) of FPV, RBV, and 2'-FdC were 41.0, 61.8, and 13.6 µM in Vero cells and 20.7, 25.8, and 8.8 µM in N2A cells, respectively. All mice infected with 1.0×104 TCID50 died or were sacrificed within 10 days post-infection (dpi) without treatment. However, mice treated with FPV for 5 days [initiated either 2 days prior to infection (-2 dpi-2 dpi) or on the day of infection (0 dpi-4 dpi)] survived significantly longer than control mice, administered with PBS (p = 0.025 and 0.011, respectively). Moreover, at 1 and 3 dpi, the virus titers in the brain were significantly lower in FPV-treated mice (0 dpi-4 dpi) versus PBS-treated mice (p = 0.002 for both 1 and 3 dpi). CONCLUSIONS/SIGNIFICANCE: Although the intracerebral inoculation route is thought to be a challenging way to evaluate drug efficacy, FPV inhibits the in vitro replication of JCV and prolongs the survival of mice intracerebrally inoculated with JCV. These results will enable the development of a specific antiviral treatment against JCV infections and establishment of an effective animal model.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , Encephalitis Virus, California/drug effects , Encephalitis, California/drug therapy , Pyrazines/administration & dosage , Animals , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Encephalitis Virus, California/genetics , Encephalitis Virus, California/growth & development , Encephalitis, California/mortality , Encephalitis, California/virology , Female , Humans , Mice , Mice, Inbred C57BL , Vero Cells
3.
Eur J Clin Microbiol Infect Dis ; 40(12): 2575-2583, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1340465

ABSTRACT

We performed a systematic review and meta-analysis for the effectiveness of Favipiravir on the fatality and the requirement of mechanical ventilation for the treatment of moderate to severe COVID-19 patients. We searched available literature and reported it by using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Until June 1, 2021, we searched PubMed, bioRxiv, medRxiv, ClinicalTrials.gov, Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar by using the keywords "Favipiravir" and terms synonymous with COVID-19. Studies for Favipiravir treatment compared to standard of care among moderate and severe COVID-19 patients were included. Risk of bias assessment was performed using Revised Cochrane risk of bias tool for randomized trials (RoB 2) and ROBINS-I assessment tool for non-randomized studies. We defined the outcome measures as fatality and requirement for mechanical ventilation. A total of 2702 studies were identified and 12 clinical trials with 1636 patients were analyzed. Nine out of 12 studies were randomized controlled trials. Among the randomized studies, one study has low risk of bias, six studies have moderate risk of bias, and 2 studies have high risk of bias. Observational studies were identified as having moderate risk of bias and non-randomized study was found to have serious risk of bias. Our meta-analysis did not reveal any significant difference between the intervention and the comparator on fatality rate (OR 1.11, 95% CI 0.64-1.94) and mechanical ventilation requirement (OR 0.50, 95% CI 0.13-1.95). There is no significant difference in fatality rate and mechanical ventilation requirement between Favipiravir treatment and the standard of care in moderate and severe COVID-19 patients.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Pyrazines/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/mortality , COVID-19/therapy , COVID-19/virology , Female , Humans , Male , Middle Aged , Observational Studies as Topic , Pyrazines/adverse effects , Randomized Controlled Trials as Topic , Respiration, Artificial , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Young Adult
4.
CPT Pharmacometrics Syst Pharmacol ; 10(10): 1161-1170, 2021 10.
Article in English | MEDLINE | ID: covidwho-1320090

ABSTRACT

The antiretroviral drug favipiravir (FPV) inhibits RNA-dependent RNA polymerase. It has been developed for the treatment of the novel coronavirus (severe acute respiratory syndrome coronavirus 2) infection disease, coronavirus disease 2019 (COVID-19). However, its pharmacokinetics in patients with COVID-19 is poorly understood. In this study, we measured FPV serum concentration by liquid chromatography-tandem mass spectrometry and conducted population pharmacokinetic analysis. A total of 39 patients were enrolled in the study: 33 were administered FPV 1600 mg twice daily (b.i.d.) on the first day followed by 600 mg b.i.d., and 6 were administered FPV 1800 mg b.i.d. on the first day followed by 800 mg or 600 mg b.i.d. The median age was 68 years (range, 27-89 years), 31 (79.5%) patients were men, median body surface area (BSA) was 1.72 m2 (range, 1.11-2.2 m2 ), and 10 (25.6%) patients required invasive mechanical ventilation (IMV) at the start of FPV. A total of 204 serum concentrations were available for pharmacokinetic analysis. A one-compartment model with first-order elimination was used to describe the pharmacokinetics. The estimated mean clearance/bioavailability (CL/F) and distribution volume/bioavailability (V/F) were 5.11 L/h and 41.6 L, respectively. Covariate analysis revealed that CL/F was significantly related to dosage, IMV use, and BSA. A simulation study showed that the 1600 mg/600 mg b.i.d. regimen was insufficient for the treatment of COVID-19 targeting the 50% effective concentration (9.7 µg/mL), especially in patients with larger BSA and/or IMV. A higher FPV dosage is required for COVID-19, but dose-dependent nonlinear pharmacokinetics may cause an unexpected significant pharmacokinetic change and drug toxicity. Further studies are warranted to explore the optimal FPV regimen.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Pyrazines/administration & dosage , Adult , Aged , Aged, 80 and over , Amides/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , Chromatography, Liquid , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Models, Theoretical , Pyrazines/pharmacokinetics , Retrospective Studies , Tandem Mass Spectrometry , Treatment Outcome
5.
Virol J ; 18(1): 146, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1309916

ABSTRACT

BACKGROUND: Favipiravir is used in treatment of Covid-19 patients. We aimed to share of ocular surface fluorescence in a patient after Favipiravir treatment in this case report. CASE PRESENTATION: A 20-year-old male patient declared no known systemic disease prior to Covid-19. He applied to us with blurry vision and blue light reflection after Covid-19 treatment with Favipiravir. We observed bilateral fluorescence on his eyes and fluorescence of his nails. Biomicroscopic examination was insignificant. CONCLUSION: We investigated the fluorescence of favipiravir tablets under ultraviolet light. Drug demonstrated fluorescence. We recorded the favipiravir fluorescence in-vitro. This appears to be a strong evidence in terms of the linkage between the fluorescence of the ocular surface and favipiravir.


Subject(s)
Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/drug therapy , Eye/chemistry , Pyrazines/adverse effects , Adult , Amides/administration & dosage , Amides/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/virology , Eye/virology , Fluorescence , Humans , Male , Pyrazines/administration & dosage , Pyrazines/chemistry , SARS-CoV-2/physiology
6.
Mol Pharm ; 18(8): 3108-3115, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1305357

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the ß-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , Ionic Liquids/chemistry , Pyrazines/administration & dosage , Administration, Oral , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacokinetics , Animals , COVID-19/drug therapy , Female , Mice , Mice, Inbred BALB C , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Solubility , Tissue Distribution
7.
Eur Rev Med Pharmacol Sci ; 25(11): 4156-4162, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281021

ABSTRACT

OBJECTIVE: Approximately 30% of patients with confirmed COVID-19 report persistent smell or taste disorders as long-term sequalae of infection. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is associated with inflammatory changes to the olfactory bulb, and treatments with anti-inflammatory properties are hypothesized to attenuate viral injury and promote recovery of olfaction after infection. Our study investigated the efficacy of a supplement with Palmitoylethanolamide (PEA) and Luteolin to support recovery of olfaction in COVID-19 patients. PATIENTS AND METHODS: We conducted a randomized-controlled pilot study in outpatients with history of confirmed COVID-19 with post-infection olfactory impairment that persisted ≥ 90 days after SARS-CoV-2 negative testing. Patients were randomized to two times a day olfactory rehabilitation alone or weekly olfactory rehabilitation plus daily oral supplement with PEA and Luteolin. Subjects with preexisting olfactory disorders were excluded. Sniffin' Sticks assessments were performed at baseline and 30 days after treatment.  Data on gender, age, and time since infection were collected. Kruskal-Wallis (KW) test was used to compare variances of Sniff scores between groups over time, and Spearman's correlation coefficients were calculated to assess for correlations between Sniff Score and gender or duration of infection. RESULTS: Among 12 patients enrolled (n=7, supplement; n=5, controls), patients receiving supplement had greater improvement in olfactory threshold, discrimination, and identification score versus controls (p=0.01). Time since infection was negatively correlated with Sniff Score, and there was no correlation between gender. CONCLUSIONS: Treatment combining olfactory rehabilitation with oral supplementation with PEA and Luteolin was associated with improved recovery of olfactory function, most marked in those patients with longstanding olfactory dysfunction. Further studies are necessary to replicate these findings and to determine whether early intervention including olfactory rehabilitation and PEA+Luteolin oral supplement might prevent SARS-CoV-2 associated olfactory impairment.


Subject(s)
Amides/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Ethanolamines/administration & dosage , Luteolin/administration & dosage , Olfaction Disorders/drug therapy , Palmitic Acids/administration & dosage , Adult , COVID-19/complications , COVID-19/diagnosis , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , Pilot Projects , Single-Blind Method , Smell/drug effects , Smell/physiology
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1176: 122768, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1240421

ABSTRACT

Favipiravir is a broad-spectrum inhibitor of viral RNA polymerase. It is currently used as a possible treatment for coronavirus disease 2019 (COVID-19). Pre-clinical or clinical trials of favipiravir require robust, sensitive, and accurate bioanalytical methods for quantitation of favipiravir levels. Recently, several studies have been reported about developing a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring favipiravir levels. However, these methods were validated predominantly for plasma samples, electrospray ionization was operated only in negative or positive mode, and clinical application of these methods has not been applied for patients with COVID-19. This study aimed was to develop a validated LC-MS/MS method for the measurement of favipiravir levels in positive and negative electrospray ionization mode and to perform a pilot study in patients with COVID-19 receiving favipiravir to demonstrate the applicability of this method in biological samples. Simple protein precipitation was used for the extraction of favipiravir from the desired matrix. Favipiravir levels were quantitated using MS / MS with an electrospray ionization source in positive and negative multiple reaction monitoring (MRM) mode. The chromatographic detection was performed on a reverse-phase Phenomenex C18 column (50 mm × 4.6 mm, 5 µm, 100 Å) with gradient elution using 0.1% formic acid in water and 0.1% formic acid in methanol as mobile phase. The method was linear over the concentration ranges of 0.048-50 µg/mL (in negative ionization mode) and 0.062-50 µg/mL (in positive ionization mode) with a correlation coefficient (r2) better than 0.998. The total run time was 3.5 min. The intra-assay and inter-assay %CV values were less than 7.2% and 8.0%, respectively. A simple, rapid and robust LC-MS / MS method was developed for the measurement of favipiravir and validation studies were performed. The validated method was successfully applied for drug level measurement in COVID-19 patients receiving favipiravir.


Subject(s)
Amides/blood , COVID-19/drug therapy , Chromatography, Liquid/methods , Pyrazines/blood , Tandem Mass Spectrometry/methods , Amides/administration & dosage , Amides/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Antiviral Agents/therapeutic use , COVID-19/blood , Drug Stability , Humans , Limit of Detection , Pyrazines/administration & dosage , Pyrazines/therapeutic use , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods
9.
Pediatr Nephrol ; 36(11): 3771-3776, 2021 11.
Article in English | MEDLINE | ID: covidwho-1237500

ABSTRACT

BACKGROUND: The rising number of infections due to Severe Acute Respiratory Syndrome Coronavirus-2 (popularly known as COVID-19) has brought to the fore new antiviral drugs as possible treatments, including favipiravir. However, there is currently no data regarding the safety of this drug in patients with kidney impairment. The aim of this paper, therefore, is to share our experience of the use of favipiravir in pediatric patients affected by COVID-19 with any degree of kidney impairment. METHODS: The study enrolled pediatric patients aged under 18 years and confirmed as suffering from COVID-19 and multisystem inflammatory syndrome in children (MIS-C) with any degree of kidney injury, who were treated with favipiravir at the time of admission. RESULTS: Out of a total of 11 patients, 7 were diagnosed with MIS-C and 4 with severe COVID-19. The median age of the cases was 15.45 (9-17.8) years and the male/female ratio was 7/4. At the time of admission, the median serum creatinine level was 1.1 mg/dl. Nine patients were treated with favipiravir for 5 days, and 2 patients for 5 days followed by remdesivir for 5-10 days despite kidney injury at the time of admission. Seven patients underwent plasma exchange for MIS-C while 2 severely affected cases underwent continuous kidney replacement therapy (CKRT) as well. One severe COVID-19 patient received plasma exchange as well as CKRT. Serum creatinine values returned to normal in mean 3.07 days. CONCLUSIONS: Favipiravir seems a suitable therapeutic option in patients affected by COVID-19 with kidney injury without a need for dose adjustment.


Subject(s)
Acute Kidney Injury/physiopathology , Amides/administration & dosage , COVID-19/complications , COVID-19/drug therapy , Pyrazines/administration & dosage , Renal Elimination , Systemic Inflammatory Response Syndrome/drug therapy , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adolescent , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Amides/pharmacokinetics , COVID-19/immunology , COVID-19/virology , Child , Creatinine/blood , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , Glomerular Filtration Rate , Humans , Male , Pyrazines/pharmacokinetics , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/virology , Treatment Outcome
10.
J Med Invest ; 68(1.2): 192-195, 2021.
Article in English | MEDLINE | ID: covidwho-1231288

ABSTRACT

This report presents a case of a 74-year-old man who showed dramatic therapeutic response to treatment of coronavirus infectious disease-19 (COVID-19) pneumonia. He reported four-day history of sustained fever and acute progressive dyspnea. He developed severe respiratory failure, underwent urgent endotracheal intubation and showed marked elevation of inflammatory and coagulation markers such as c-reactive protein (CRP), ferritin, lactate dehydrogenase (LDH) and D-dimer. Chest computed tomography (CT) demonstrated diffuse consolidation and ground glass opacity (GGO). We diagnosed critical COVID-19 pneumonia with detailed sick contact history and naso-pharyngeal swab of a reverse-transcriptase-polymerase-chain reaction (RT-PCR) assay testing. He received anti-viral drug, anti-interleukin (IL-6) receptor antagonist and intravenous methylprednisolone. After commencing combined intensive therapy, he showed dramatic improvement of clinical condition, serum biomarkers and radiological findings. Early diagnosis and rapid critical care management may provide meaningful clinical benefit even if severe case. J. Med. Invest. 68 : 192-195, February, 2021.


Subject(s)
COVID-19/drug therapy , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Aged , Amides/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/diagnostic imaging , Critical Illness , Drug Therapy, Combination , Glucocorticoids/administration & dosage , Humans , Lung/diagnostic imaging , Male , Methylprednisolone/administration & dosage , Pneumonia, Viral/diagnostic imaging , Pyrazines/administration & dosage , Receptors, Interleukin-6/antagonists & inhibitors , Tomography, X-Ray Computed , Treatment Outcome
11.
Endocr J ; 68(4): 477-484, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1204140

ABSTRACT

We provide the details of the successful management of a patient with active Cushing's disease complicated with coronavirus disease 2019 (COVID-19) pneumonia. The patient was a 27-year-old Japanese female healthcare worker who was scheduled to undergo pituitary surgery for Cushing's disease. She had been in close contact with an undiagnosed patient infected with COVID-19 and then developed COVID-19 pneumonia. Despite a lack of known risk factors associated with severe COVID-19 infection, the patient's dyspnea worsened and her respiratory condition deteriorated, as indicated by the need for 7 L/min oxygen supply by mask to maintain her oxygen saturation at >90%. Medical treatment was initiated to control hypercortisolism by the 'block and replace' regimen using steroidogenesis inhibitors and hydrocortisone. The COVID-19 pneumonia improved with multi-modal treatment including antiviral therapy. One month later, after a negative severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) test result and with appropriate protection against virus transmission to medical staff in the operating room and daily medical care nurses, trans-sphenoidal surgery was performed by our highly experienced pituitary surgeon. One month after the surgery, the patient's basal ACTH and cortisol levels and urinary free cortisol were all under the detection limit. Surgical remission was expected. Since hypercortisolism due to active Cushing's disease may worsen a COVID-19 infection, multi-disciplinary management that includes appropriate and prompt treatment strategies is mandatory in such cases.


Subject(s)
Amides/administration & dosage , Benzamidines/administration & dosage , COVID-19/therapy , Guanidines/administration & dosage , Metyrapone/administration & dosage , Pituitary ACTH Hypersecretion/therapy , Pregnenediones/administration & dosage , Pyrazines/administration & dosage , ACTH-Secreting Pituitary Adenoma/complications , ACTH-Secreting Pituitary Adenoma/drug therapy , Adenoma/complications , Adenoma/drug therapy , Adult , COVID-19/complications , COVID-19/pathology , Combined Modality Therapy , Dihydrotestosterone/administration & dosage , Dihydrotestosterone/analogs & derivatives , Disease Progression , Female , Health Personnel , Heparin/administration & dosage , Humans , Japan , Neurosurgical Procedures , Pituitary ACTH Hypersecretion/blood , Pituitary ACTH Hypersecretion/complications , Pituitary ACTH Hypersecretion/pathology , SARS-CoV-2/physiology , Treatment Outcome , Trimethoprim, Sulfamethoxazole Drug Combination/administration & dosage
12.
Int Immunopharmacol ; 97: 107702, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198831

ABSTRACT

BACKGROUND: The clinical characteristics and treatment of patients who tested positive for COVID-19 after recovery remained elusive. Effective antiviral therapy is important for tackling these patients. We assessed the efficacy and safety of favipiravir for treating these patients. METHODS: This is a multicenter, open-label, randomized controlled trial in SARS-CoV-2 RNA re-positive patients. Patients were randomly assigned in a 2:1 ratio to receive either favipiravir, in addition to standard care, or standard care alone. The primary outcome was time to achieve a consecutive twice (at intervals of more than 24 h) negative RT-PCR result for SARS-CoV-2 RNA in nasopharyngeal swab and sputum sample. RESULTS: Between March 27 and May 9, 2020, 55 patients underwent randomization; 36 were assigned to the favipiravir group and 19 were assigned to the control group. Favipiravir group had a significantly shorter time from start of study treatment to negative nasopharyngeal swab and sputum than control group (median 17 vs. 26 days); hazard ratio 2.1 (95% CI [1.1-4.0], p = 0.038). The proportion of virus shedding in favipiravir group was higher than control group (80.6% [29/36] vs. 52.6% [10/19], p = 0.030, respectively). C-reactive protein decreased significantly after treatment in the favipiravir group (p = 0.016). The adverse events were generally mild and self-limiting. CONCLUSION: Favipiravir was safe and superior to control in shortening the duration of viral shedding in SARS-CoV-2 RNA recurrent positive after discharge. However, a larger scale and randomized, double-blind, placebo-controlled trial is required to confirm our conclusion.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Pyrazines/administration & dosage , Reinfection/drug therapy , Administration, Oral , Adult , Aged , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/blood , Female , Humans , Lymphocyte Subsets/drug effects , Male , Middle Aged , Patient Discharge , Pyrazines/adverse effects , RNA, Viral/analysis , RNA, Viral/drug effects , Reinfection/blood , SARS-CoV-2/drug effects , Treatment Outcome
13.
Prostaglandins Other Lipid Mediat ; 154: 106540, 2021 06.
Article in English | MEDLINE | ID: covidwho-1096205

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is upsetting the world and innovative therapeutic solutions are needed in an attempt to counter this new pandemic. Great hope lies in vaccines, but drugs to cure the infected patient are just as necessary. In the most severe forms of the disease, a cytokine storm with neuroinflammation occurs, putting the patient's life at serious risk, with sometimes long-lasting sequelae. Palmitoylethanolamide (PEA) is known to possess anti-inflammatory and neuroprotective properties, which make it an ideal candidate to be assumed in the earliest stage of the disease. Here, we provide a mini-review on the topic, pointing out phospholipids consumption in COVID-19, the possible development of an antiphospholipid syndrome secondary to SARS-CoV-2 infection, and reporting our preliminary single-case experience concerning to a 45-year-old COVID-19 female patient recently treated with success by micronized / ultramicronized PEA.


Subject(s)
Amides/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiphospholipid Syndrome/drug therapy , COVID-19/drug therapy , Ethanolamines/administration & dosage , Neuroprotective Agents/administration & dosage , Palmitic Acids/administration & dosage , SARS-CoV-2/metabolism , Antiphospholipid Syndrome/etiology , Antiphospholipid Syndrome/metabolism , Antiphospholipid Syndrome/pathology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Female , Humans , Middle Aged
14.
Biomed Pharmacother ; 133: 110825, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1002354

ABSTRACT

BACKGROUND: Since December 2019, COVID-19 has spread to almost every corner of the world. In theory, tocilizumab and favipiravir are considered to be reliable drugs for the treatment of COVID-19 with elevated IL-6. We aimed to assess the efficacy and safety of tocilizumab combined with favipiravir in patients with COVID-19. METHODS: This was a multicenter trial in adults with COVID-19. Patients were randomly assigned (3:1:1) to a 14-day combination of favipiravir combined with tocilizumab (combination group), favipiravir, and tocilizumab. The primary outcome was the cumulative lung lesion remission rate (lung CT examination indicated absorption of lung inflammation). RESULTS: Between Feb 2 and March 15, 2020, 26 patients were recruited; 14 were randomly assigned to the combination group, 7 were assigned to the favipiravir group and 5 were assigned to the tocilizumab group. The cumulative lung lesion remission rate at day 14 was significantly higher in combination group as compared with favipiravir group (P = 0.019, HR 2.66 95 % CI [1.08-6.53]). And there was also a significant difference between tocilizumab and favipivavir (P = 0.034, HR 3.16, 95 % CI 0.62-16.10). In addition, there was no significant difference between the combination group and the tocilizumab group (P = 0.575, HR 1.28 95 %CI 0.39-4.23). Furthermore, combined therapy can also significantly relieve clinical symptoms and help blood routine to return to normal. No serious adverse events were reported. CONCLUSION: Tocilizumab combined with or without favipiravir can effectively improve the pulmonary inflammation of COVID-19 patients and inhibit the deterioration of the disease.


Subject(s)
Amides/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Pyrazines/therapeutic use , SARS-CoV-2/drug effects , Adult , Aged , Aged, 80 and over , Amides/administration & dosage , Amides/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/diagnostic imaging , COVID-19/pathology , COVID-19/therapy , Drug Therapy, Combination , Female , Humans , Interleukin-6/blood , Kaplan-Meier Estimate , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Models, Immunological , Pyrazines/administration & dosage , Pyrazines/adverse effects , Receptors, Interleukin-6/antagonists & inhibitors , Respiration, Artificial/statistics & numerical data , Sample Size , Treatment Outcome
15.
BMJ Case Rep ; 13(12)2020 Dec 18.
Article in English | MEDLINE | ID: covidwho-991779

ABSTRACT

The SARS-CoV-2 has wreaked havoc globally and has claimed innumerable lives all over the world. The symptoms of this disease may range from mild influenza-like symptoms to severe acute respiratory distress syndrome with high morbidity and mortality. With improved diagnostic techniques and better disease understanding, an increased number of cases are being reported with extrapulmonary manifestations of this disease ranging from renal and gastrointestinal to cardiac, hepatic, neurological and haematological dysfunction. Subacute thyroiditis is a self-limiting and painful thyroid gland inflammation most often secondary to viral infections. We report a case of subacute thyroiditis in a 58-year-old gentleman presenting with a painful swelling in the neck who was subsequently detected to be positive for SARS-CoV-2. We seek to highlight the broad clinical spectrum of the COVID-19 by reporting probably the first case of subacute thyroiditis possibly induced by SARS-CoV-2 infection from India.


Subject(s)
Amides/administration & dosage , Azithromycin/administration & dosage , COVID-19 , Prednisolone/administration & dosage , Pyrazines/administration & dosage , SARS-CoV-2/isolation & purification , Thyroid Gland/diagnostic imaging , Thyroiditis, Subacute , Antiviral Agents/administration & dosage , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/physiopathology , Diagnosis, Differential , Glucocorticoids/administration & dosage , Humans , Male , Middle Aged , Radionuclide Imaging/methods , Thyroid Function Tests/methods , Thyroiditis, Subacute/diagnosis , Thyroiditis, Subacute/physiopathology , Thyroiditis, Subacute/therapy , Thyroiditis, Subacute/virology , Treatment Outcome , Ultrasonography, Doppler, Color/methods
16.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Article in English | MEDLINE | ID: covidwho-939841

ABSTRACT

Favipiravir is an oral broad-spectrum inhibitor of viral RNA-dependent RNA polymerase that is approved for treatment of influenza in Japan. We conducted a prospective, randomized, open-label, multicenter trial of favipiravir for the treatment of COVID-19 at 25 hospitals across Japan. Eligible patients were adolescents and adults admitted with COVID-19 who were asymptomatic or mildly ill and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomly assigned at a 1:1 ratio to early or late favipiravir therapy (in the latter case, the same regimen starting on day 6 instead of day 1). The primary endpoint was viral clearance by day 6. The secondary endpoint was change in viral load by day 6. Exploratory endpoints included time to defervescence and resolution of symptoms. Eighty-nine patients were enrolled, of whom 69 were virologically evaluable. Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76 to 2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, times to defervescence were 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95% CI, 0.81 to 4.35). During therapy, 84.1% developed transient hyperuricemia. Favipiravir did not significantly improve viral clearance as measured by reverse transcription-PCR (RT-PCR) by day 6 but was associated with numerical reduction in time to defervescence. Neither disease progression nor death occurred in any of the patients in either treatment group during the 28-day participation. (This study has been registered with the Japan Registry of Clinical Trials under number jRCTs041190120.).


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Pyrazines/administration & dosage , SARS-CoV-2/drug effects , Viral Load/drug effects , Adolescent , Adult , Amides/adverse effects , Antiviral Agents/adverse effects , Asymptomatic Diseases , COVID-19/physiopathology , COVID-19/virology , Female , Hospitalization , Humans , Hyperuricemia/chemically induced , Hyperuricemia/diagnosis , Hyperuricemia/physiopathology , Japan , Male , Middle Aged , Prospective Studies , Pyrazines/adverse effects , Random Allocation , SARS-CoV-2/pathogenicity , Secondary Prevention/organization & administration , Severity of Illness Index , Time-to-Treatment/organization & administration , Treatment Outcome
17.
EBioMedicine ; 62: 103125, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-938894

ABSTRACT

BACKGROUND: The pharmacokinetics and appropriate dose regimens of favipiravir are unknown in hospitalized influenza patients; such data are also needed to determine dosage selection for favipiravir trials in COVID-19. METHODS: In this dose-escalating study, favipiravir pharmacokinetics and tolerability were assessed in critically ill influenza patients. Participants received one of two dosing regimens; Japan licensed dose (1600 mg BID on day 1 and 600 mg BID on the following days) and the higher dose (1800 mg/800 mg BID) trialed in uncomplicated influenza. The primary pharmacokinetic endpoint was the proportion of patients with a minimum observed plasma trough concentration (Ctrough) ≥20 mg/L at all measured time points after the second dose. RESULTS: Sixteen patients were enrolled into the low dose group and 19 patients into the high dose group of the study. Favipiravir Ctrough decreased significantly over time in both groups (p <0.01). Relative to day 2 (48 hrs), concentrations were 91.7% and 90.3% lower in the 1600/600 mg group and 79.3% and 89.5% lower in the 1800/800 mg group at day 7 and 10, respectively. In contrast, oseltamivir concentrations did not change significantly over time. A 2-compartment disposition model with first-order absorption and elimination described the observed favipiravir concentration-time data well. Modeling demonstrated that less than 50% of patients achieved Ctrough ≥20 mg/L for >80% of the duration of treatment of the two dose regimens evaluated (18.8% and 42.1% of patients for low and high dose regimen, respectively). Increasing the favipravir dosage predicted a higher proportion of patients reaching this threshold of 20 mg/L, suggesting that dosing regimens of ≥3600/2600 mg might be required for adequate concentrations. The two dosing regimens were well-tolerated in critical ill patients with influenza. CONCLUSION: The two dosing regimens proposed for uncomplicated influenza did not achieve our pre-defined treatment threshold.


Subject(s)
Amides , Influenza, Human/drug therapy , Oseltamivir , Pyrazines , Aged , Amides/administration & dosage , Amides/pharmacokinetics , Drug Therapy, Combination , Female , Humans , Influenza, Human/blood , Male , Middle Aged , Oseltamivir/administration & dosage , Oseltamivir/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Severity of Illness Index
18.
Trials ; 21(1): 935, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-934299

ABSTRACT

OBJECTIVES: The GETAFIX trial will test the hypothesis that favipiravir is a more effective treatment for COVID-19 infection in patients who have early stage disease, compared to current standard of care. This study will also provide an important opportunity to investigate the safety and tolerability of favipiravir, the pharmacokinetic and pharmacodynamic profile of this drug and mechanisms of resistance in the context of COVID-19 infection, as well as the effect of favipiravir on hospitalisation duration and the post COVID-19 health and psycho-social wellbeing of patients recruited to the study. TRIAL DESIGN: GETAFIX is an open label, parallel group, two arm phase II/III randomised trial with 1:1 treatment allocation ratio. Patients will be randomised to one of two arms and the primary endpoint will assess the superiority of favipiravir plus standard treatment compared to standard treatment alone. PARTICIPANTS: This trial will recruit adult patients with confirmed positive valid COVID-19 test, who are not pregnant or breastfeeding and have no prior major co-morbidities. This is a multi-centre trial, patients will be recruited from in-patients and outpatients from three Glasgow hospitals: Royal Alexandra Hospital; Queen Elizabeth University Hospital; and the Glasgow Royal Infirmary. Patients must meet all of the following criteria: 1. Age 16 or over at time of consent 2. Exhibiting symptoms associated with COVID-19 3. Positive for SARS-CoV-2 on valid COVID-19 test 4. Point 1, 2, 3, or 4 on the WHO COVID-19 ordinal severity scale at time of randomisation. (Asymptomatic with positive valid COVID-19 test, Symptomatic Independent, Symptomatic assistance needed, Hospitalized, with no oxygen therapy) 5. Have >=10% risk of death should they be admitted to hospital as defined by the ISARIC4C risk index: https://isaric4c.net/risk 6. Able to provide written informed consent 7. Negative pregnancy test (women of childbearing potential*) 8. Able to swallow oral medication Patients will be excluded from the trial if they meet any of the following criteria: 1. Renal impairment requiring, or likely to require, dialysis or haemofiltration 2. Pregnant or breastfeeding 3. Of child bearing potential (women), or with female partners of child bearing potential (men) who do not agree to use adequate contraceptive measures for the duration of the study and for 3 months after the completion of study treatment 4. History of hereditary xanthinuria 5. Other patients judged unsuitable by the Principal Investigator or sub-Investigator 6. Known hypersensitivity to favipiravir, its metabolites or any excipients 7. Severe co-morbidities including: patients with severe hepatic impairment, defined as: • greater than Child-Pugh grade A • AST or ALT > 5 x ULN • AST or ALT >3 x ULN and Total Bilirubin > 2xULN 8. More than 96 hours since first positive COVID-19 test sample was taken 9. Unable to discontinue contra-indicated concomitant medications This is a multi-centre trial, patients will be recruited from in-patients and outpatients from three Glasgow hospitals: Royal Alexandra Hospital; Queen Elizabeth University Hospital; and the Glasgow Royal Infirmary. INTERVENTION AND COMPARATOR: Patients randomised to the experimental arm of GETAFIX will receive standard treatment for COVID-19 at the discretion of the treating clinician plus favipiravir. These patients will receive a loading dose of favipiravir on day 1 of 3600mg (1800mg 12 hours apart). On days 2-10, patients in the experimental arm will receive a maintenance dose of favipiravir of 800mg 12 hours apart (total of 18 doses). Patients randomised to the control arm of the GETAFIX trial will receive standard treatment for COVID-19 at the discretion of the treating clinician. MAIN OUTCOMES: The primary outcome being assessed in the GETAFIX trial is the efficacy of favipiravir in addition to standard treatment in patients with COVID-19 in reducing the severity of disease compared to standard treatment alone. Disease severity will be assessed using WHO COVID 10 point ordinal severity scale at day 15 +/- 48 hours. All randomised participants will be followed up until death or 60 days post-randomisation (whichever is sooner). RANDOMISATION: Patients will be randomised 1:1 to the experimental versus control arm using computer generated random sequence allocation. A minimisation algorithm incorporating a random component will be used to allocate patients. The factors used in the minimisation will be: site, age (16-50/51-70/71+), history of hypertension or currently obsess (BMI>30 or obesity clinically evident; yes/no), 7 days duration of symptoms (yes/no/unknown), sex (male/female), WHO COVID-19 ordinal severity score at baseline (1/2or 3/4). BLINDING (MASKING): No blinding will be used in the GETAFIX trial. Both participants and those assessing outcomes will be aware of treatment allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): In total, 302 patients will be randomised to the GETAFIX trial: 151 to the control arm and 151 to the experimental arm. There will be an optional consent form for patients who may want to contribute to more frequent PK and PD sampling. The maximum number of patients who will undergo this testing will be sixteen, eight males and eight females. This option will be offered to all patients who are being treated in hospital at the time of taking informed consent, however only patients in the experimental arm of the trial will be able to undergo this testing. TRIAL STATUS: The current GETAFIX protocol is version 4.0 12th September 2020. GETAFIX opened to recruitment on 26th October 2020 and will recruit patients over a period of approximately six months. TRIAL REGISTRATION: GETAFIX was registered on the European Union Drug Regulating Authorities Clinical Trials (EudraCT) Database on 15th April 2020; Reference number 2020-001904-41 ( https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001904-41/GB ). GETAFIX was registered on ISRCTN on 7th September 2020; Reference number ISRCTN31062548 ( https://www.isrctn.com/ISRCTN31062548 ). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (see Additional file 2).


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pyrazines/therapeutic use , Adult , Amides/administration & dosage , Amides/pharmacokinetics , Amides/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Case-Control Studies , Coronavirus Infections/classification , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , SARS-CoV-2 , Safety , Scotland/epidemiology , Severity of Illness Index , Treatment Outcome
19.
Int J Infect Dis ; 102: 538-543, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-917312

ABSTRACT

OBJECTIVE: To evaluate the therapeutic effectiveness of favipiravir combined with inhaled interferon beta-1b in adult patients hospitalized with moderate to severe COVID-19 pneumonia. METHODS: A randomized, open-label controlled trial of oral favipiravir in adults hospitalized with moderate to severe COVID-19 pneumonia from June 22nd 2020 to August 13th 2020 was conducted. Patients were randomly assigned to receive either a combination of favipiravir with interferon beta-1b by inhalation aerosol or hydroxychloroquine (HCQ). The outcome endpoints included improvement in inflammatory markers, lower length of hospital stay (LOS), discharges and lower overall 14-day mortality. RESULTS: A total of 89 patients underwent randomization with 49% (n = 44) assigned to favipiravir and 51% (n = 45) assigned HCQ. The overall mean age was 55 ± 14 years and 58% (n = 52) were males. There were no significant differences in the inflammatory biomarkers at hospital discharge between the two groups; C-reactive protein (p = 0.413), ferritin (p = 0.968), lactate dehydrogenase (p = 0.259) and interleukin 6 (p = 0.410). There were also no significant differences between the two groups with regards to the overall LOS (7 vs 7 days; p = 0.948), transfers to the ICU (18.2% vs 17.8%; p = 0.960), discharges (65.9% vs 68.9%; p = 0.764) and overall mortality (11.4% vs 13.3%; p = 0.778). CONCLUSIONS: No differences in clinical outcomes were found between favipiravir plus inhaled interferon beta-1b and hydroxychloroquine in adults hospitalized with moderate to severe COVID-19 pneumonia.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , Interferon beta-1b/administration & dosage , Pyrazines/administration & dosage , Administration, Oral , Adult , Aged , COVID-19/virology , Drug Therapy, Combination , Female , Hospitalization , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Treatment Outcome
20.
Trials ; 21(1): 886, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-895021

ABSTRACT

OBJECTIVES: We will evaluate the efficacy and safety of favipiravir and interferon beta-1a compared to lopinavir/ritonavir and interferon beta-1a in patients with confirmed COVID-19, who are moderately ill. TRIAL DESIGN: This is a phase 3, single-center, randomized, open-label, controlled trial with a parallel-group design carried out at Shahid Mohammadi Hospital, Bandar Abbas, Iran. PARTICIPANTS: All patients with age ≥ 20 years admitted at the Severe Acute Respiratory Syndrome Departments of the Shahid Mohammadi Hospital, Bandar Abbas, Iran, will be screened for the following criteria. INCLUSION CRITERIA: 1. Confirmed diagnosis of infection with SARS-CoV-2 using polymerase chain reaction and/or antibody tests. 2. Moderate COVID-19 pneumonia (via computed tomography and/or X-ray imaging), requiring hospitalization. 3. Hospitalized ≤ 48 h. 4. Signing informed consent and willingness of the participant to accept randomization to any assigned treatment arm. EXCLUSION CRITERIA: 1. Underlying conditions, including chronic hepatitis, cirrhosis, cholestatic liver diseases, cholecystitis, peptic ulcers, acute and chronic renal failure, and peptic ulcers. 2. Severe and critical COVID-19 pneumonia. 3. History of allergy to favipiravir, lopinavir/ritonavir, and interferon beta-1a. 4. Pregnancy and breastfeeding. INTERVENTION AND COMPARATOR: Intervention group: favipiravir (Zhejiang Hisun, China) with interferon beta-1a (CinnaGen, Iran). This group will receive 1600 mg favipiravir twice a day for the first day and 600 mg twice a day for the following 4 days with five doses of 44 mcg interferon beta-1a every other day. CONTROL GROUP: lopinavir/ritonavir (Heterd Company, India) with interferon beta-1a (CinnaGen, Iran). This group will receive 200/50 mg lopinavir/ritonavir twice a day for 7 days with five doses of 44 mcg interferon beta-1a every other day. Other supportive and routine care will be the same in both groups. MAIN OUTCOMES: The primary outcome of the trial is the viral load of SARS-CoV-2 in the nasopharyngeal samples assessed by RT-PCR after 7 days of randomization as well as clinical improvement of fever and O2 saturation within 7 days of randomization. The secondary outcomes are the length of hospital stay and the incidence of serious adverse drug reactions within 7 days of randomization. RANDOMIZATION: Eligible patients will be allocated to one of the study arms using block randomization in a 1:1 ratio (each block consists of 10 patients). A web-based system will be used to generate random numbers for the allocation sequence. Each number relates to one of the study arms. BLINDING (MASKING): This is an open-label trial without blinding and placebo control. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 60 patients will be randomized into two groups (30 patients in the intervention group and 30 patients in the control group). TRIAL STATUS: The trial protocol is version 1.0, 22 July 2020. Recruitment began on 25 July 2020 and is anticipated to be completed by 25 September 2020. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (IRCT) IRCT20200506047323N3 . Registered on 22 July 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting the dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
Amides , Coronavirus Infections , Drug Therapy, Combination/methods , Interferons , Lopinavir , Pandemics , Pneumonia, Viral , Pyrazines , Ritonavir , Adult , Amides/administration & dosage , Amides/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Drug Combinations , Drug Monitoring/methods , Female , Humans , Interferons/administration & dosage , Interferons/adverse effects , Iran , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pyrazines/administration & dosage , Pyrazines/adverse effects , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , Viral Load/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...