Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mini Rev Med Chem ; 22(2): 232-247, 2022.
Article in English | MEDLINE | ID: covidwho-1308219

ABSTRACT

Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and took away lives of more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). The entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs have been currently approved that can completely eliminate the deadly coronavirus. The promising SARS-CoV-2 antiviral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2, which are favipiravir, remdesivir and lopinavir.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemical synthesis , Alanine/analogs & derivatives , Alanine/chemical synthesis , Amides/chemical synthesis , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Humans , Lopinavir/chemical synthesis , Pyrazines/chemical synthesis
2.
Mol Pharm ; 18(8): 3108-3115, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1305357

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the ß-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , Ionic Liquids/chemistry , Pyrazines/administration & dosage , Administration, Oral , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacokinetics , Animals , COVID-19/drug therapy , Female , Mice , Mice, Inbred BALB C , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Solubility , Tissue Distribution
3.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1111592

ABSTRACT

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Ketones/pharmacology , Proteasome Inhibitors/pharmacology , SARS-CoV-2/drug effects , Amides/chemical synthesis , Amides/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Calpain/chemistry , Calpain/metabolism , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Screening Assays, Antitumor , Humans , Ketones/chemical synthesis , Ketones/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Protein Binding , Structure-Activity Relationship
4.
Chembiochem ; 22(6): 939-948, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-935019

ABSTRACT

The human world is currently influenced largely by the outbreak of pandemic COVID-19. At this moment, most researchers focus on developing treatment strategies and measures to work against COVID-19. Treatment strategies specific for COVID-19 are lacking. This article provides an overview of the life cycle and routes of transmission of SARS-CoV-2. The therapeutic effects of two drugs [i. e., remdesivir (RDV) and favipiravir (FPV)] which can potentially tackle COVID-19 are discussed based on current published data. This review can serve as a reference for future studies.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Pyrazines/therapeutic use , SARS-CoV-2/drug effects , Adenosine Monophosphate/chemical synthesis , Adenosine Monophosphate/therapeutic use , Alanine/chemical synthesis , Alanine/therapeutic use , Amides/chemical synthesis , Animals , Antiviral Agents/chemical synthesis , Humans , Pyrazines/chemical synthesis , SARS-CoV-2/physiology
5.
Comput Biol Chem ; 89: 107372, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-743928

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Humans , Isoindoles , Ligands , Lopinavir/chemical synthesis , Lopinavir/chemistry , Lopinavir/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Ritonavir/chemical synthesis , Ritonavir/chemistry , Ritonavir/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL