Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Front Immunol ; 13: 1035559, 2022.
Article in English | MEDLINE | ID: covidwho-2109772

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. The genome of SARS-CoV-2 encodes nine accessory proteins that are involved in host-pathogen interaction. ORF8 is unique among these accessory proteins. SARS-CoV-2 ORF8 shares a surprisingly low amino acid sequence similarity with SARS-COV ORF8 (30%), and it is presumed to have originated from bat. Studies have shown that ORF8 exerts multiple different functions that interfere with host immune responses, including the downregulation of MHC class I molecules. These functions may represent strategies of host immune evasion. The x-ray crystal structure of ORF8 revealed an immunoglobulin-like domain with several distinguishing features. To date, there are numerous unanswered questions about SARS-CoV-2 ORF8 protein and its structure-function relationship that we discuss in this mini-review. A better understanding of how ORF8 interacts with components of the immune system is needed for elucidating COVID-19 pathogenesis and to develop new avenues for the treatment of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Amino Acid Sequence , Host-Pathogen Interactions
2.
BMC Vet Res ; 18(1): 392, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108779

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, has become the major causative agent of acute gastroenteritis in piglets since 2010 in China. RESULTS: In the current study, 91 complete spike (S) gene sequences were obtained from PEDV positive samples collected from 17 provinces in China from March 2020 to March 2021. A phylogenetic analysis showed that 92.3% (84 out of 91) of the identified strains belonged to GII subtype, while 7.7% (7 out of 91) were categorized as S-INDEL like strains and grouped within GI-c clade. Based on a recombination analysis, six of S-INDEL like strains were recombinant strains originated from S-INDEL strain FR/001/2014 and virulent strain AJ1102. In addition, PEDV variant strains (CH/GDMM/202012, CH/GXDX/202010 et al) carrying novel insertions (360QGRKS364 and 1278VDVF1281) in the S protein were observed. Furthermore, the deduced amino acid sequences for the S protein showed that multiple amino acid substitutions in the antigenic epitopes in comparison with the vaccine strains. CONCLUSIONS: In conclusion, these data provide novel molecular evidence on the epidemiology and molecular diversity of PEDV in 2020-2021. This information may help design a strategy for controlling and preventing the prevalence of PEDV variant strains in China.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Swine Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Amino Acid Sequence , China/epidemiology , Spike Glycoprotein, Coronavirus/genetics
3.
Exp Oncol ; 44(3): 208-212, 2022 11.
Article in English | MEDLINE | ID: covidwho-2092132

ABSTRACT

BACKGROUND: Identification of epitopes recognized by leukemic B cells could provide insights into the molecular mechanisms of B cell transformation in chronic lymphocytic leukemia (CLL). The aim of this paper was to compare nucleotide sequences of immunoglobulin heavy chain variable region (IGHV) genes in CLL with known sequences directed against antigens of different origins available in public databases. MATERIALS AND METHODS: Analysis was performed in the groups of 412 unselected CLL patients with productive IGHV gene using polymerase chain reaction followed by direct sequencing. RESULTS: Homology between CLL Ig sequences and antibodies directed against autoantigens was found in 12 patients (2.9%), homology between CLL Ig sequences and antiviral antibodies - in 35 patients (8.5%). Most of these sequences belonged to stereotypical clusters. Among the sequences that have homology to antiviral antibodies, the most prevalent were cases homologous with antibodies against HIV (14 cases, 3.4%) and SARS-CoV-2 antigens (10 cases, 2.4%). None of the patients in our cohort was HIV-infected and the study was conducted before the emergence of SARS-CoV-2 virus. CONCLUSIONS: Suggestions could be made about the possible impact of past infection of SARS-CoV-2 virus on the pathogenesis of CLL. In particular, an increase in the proportion of CLL cases with the expression of some stereotyped BCR and/or an increase of CLL risk in the long-term period after SARS-CoV-2 virus infection is not excluded. This assumption needs to be verified by epidemiological data.


Subject(s)
COVID-19 , HIV Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Immunoglobulin Heavy Chains/genetics , Amino Acid Sequence , SARS-CoV-2/genetics , Immunoglobulin Variable Region/genetics , HIV Infections/epidemiology , HIV Infections/complications , Antiviral Agents
4.
Bioessays ; 42(10): e2000091, 2020 10.
Article in English | MEDLINE | ID: covidwho-2074923

ABSTRACT

Despite claims from prominent scientists that SARS-CoV-2 indubitably emerged naturally, the etiology of this novel coronavirus remains a pressing and open question: Without knowing the true nature of a disease, it is impossible for clinicians to appropriately shape their care, for policy-makers to correctly gauge the nature and extent of the threat, and for the public to appropriately modify their behavior. Unless the intermediate host necessary for completing a natural zoonotic jump is identified, the dual-use gain-of-function research practice of viral serial passage should be considered a viable route by which the novel coronavirus arose. The practice of serial passage mimics a natural zoonotic jump, and offers explanations for SARS-CoV-2's distinctive spike-protein region and its unexpectedly high affinity for angiotensin converting enzyme (ACE2), as well as the notable polybasic furin cleavage site within it. Additional molecular clues raise further questions, all of which warrant full investigation into the novel coronavirus's origins and a re-examination of the risks and rewards of dual-use gain-of-function research.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/etiology , Coronavirus Infections/transmission , Pneumonia, Viral/etiology , Pneumonia, Viral/transmission , Zoonoses/transmission , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/growth & development , COVID-19 , Gain of Function Mutation/genetics , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Serial Passage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Zoonoses/virology
5.
Biomolecules ; 12(9)2022 09 07.
Article in English | MEDLINE | ID: covidwho-2055137

ABSTRACT

Galectins constitute a protein family of soluble and non-glycosylated animal lectins that show a ß-galactoside-binding activity via a conserved sequence of approximately 130-140 amino acids located in the carbohydrate recognition domain (CRD) [...].


Subject(s)
Galectins , Neoplasms , Amino Acid Sequence , Amino Acids , Animals , Carbohydrates/chemistry , Galectins/metabolism
6.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2043775

ABSTRACT

In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease, resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate need to find drugs to treat patients. SARS-CoV-2 papain-like cysteine protease (PLpro) not only plays an important role in the pathogenesis of the virus but is also a target protein for the development of inhibitor drugs. Therefore, to develop targeted inhibitors, it is necessary to analyse and verify PLpro sites and explore whether there are other cryptic binding pockets with better activity. In this study, first, we detected the site of the whole PLpro protein by sitemap of Schrödinger (version 2018), the cavity of LigBuilder V3, and DeepSite, and roughly judged the possible activated binding site area. Then, we used the mixed solvent dynamics simulation (MixMD) of probe molecules to induce conformational changes in the protein to find the possible cryptic active sites. Finally, the TRAPP method was used to predict the druggability of cryptic pockets and analyse the changes in the physicochemical properties of residues around these sites. This work will help promote the research of SARS-CoV-2 PLpro inhibitors.


Subject(s)
COVID-19 , Papain , Amino Acid Sequence , COVID-19/drug therapy , Coronavirus Papain-Like Proteases , Humans , Pandemics , Papain/metabolism , SARS-CoV-2 , Solvents
7.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2010110

ABSTRACT

The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Sequence , COVID-19/drug therapy , Humans , Membrane Fusion , Molecular Docking Simulation , Peptides/chemistry , Spike Glycoprotein, Coronavirus/metabolism
8.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: covidwho-2009941

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
9.
Commun Biol ; 5(1): 925, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008334

ABSTRACT

RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Amino Acid Sequence , Coronavirus RNA-Dependent RNA Polymerase/chemistry , RNA/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry
10.
Faraday Discuss ; 240(0): 184-195, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-1984449

ABSTRACT

AlphaFold2 is a machine-learning based program that predicts a protein structure based on the amino acid sequence. In this article, we report on the current usages of this new tool and give examples from our work in the Coronavirus Structural Task Force. With its unprecedented accuracy, it can be utilized for the design of expression constructs, de novo protein design and the interpretation of Cryo-EM data with an atomic model. However, these methods are limited by their training data and are of limited use to predict conformational variability and fold flexibility; they also lack co-factors, post-translational modifications and multimeric complexes with oligonucleotides. They also are not always perfect in terms of chemical geometry. Nevertheless, machine learning-based fold prediction is a game changer for structural bioinformatics and experimentalists alike, with exciting developments ahead.


Subject(s)
Computational Biology , Proteins , Models, Molecular , Amino Acid Sequence , Proteins/chemistry , Machine Learning , Protein Conformation
11.
Emerg Microbes Infect ; 11(1): 2120-2131, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1967813

ABSTRACT

Spike (S) glycoprotein is the most significant structural protein of SARS-CoV-2 and a key target for neutralizing antibodies. In light of the on-going SARS-CoV-2 pandemic, identification and screening of epitopes of spike glycoproteins will provide vital progress in the development of sensitive and specific diagnostic tools. In the present study, NTD, RBD, and S2 genes were inserted into the pcDNA3.1(+) vector and designed with N-terminal 6× His-tag for fusion expression in HEK293F cells by transient transfection. Six monoclonal antibodies (4G, 9E, 4B, 7D, 8F, and 3D) were prepared using the expressed proteins by cell fusion technique. The characterization of mAbs was performed by indirect -ELISA, western blot, and IFA. We designed 49 overlapping synthesized peptides that cover the extracellular region of S protein in which 6 amino acid residues were offset between adjacent (S1-S49). Peptides S12, S19, and S49 were identified as the immunodominant epitope regions by the mAbs. These regions were further truncated and the peptides S12.2 286TDAVDCALDPLS297, S19.2 464FERDISTEIYQA475, and S49.4 1202ELGKYEQYIKWP1213 were identified as B- cell linear epitopes for the first time. Alanine scans showed that the D467, I468, E471, Q474, and A475 of the epitope S19.2 and K1205, Q1208, and Y1209 of the epitope S49.4 were the core sites involved in the mAbs binding. The multiple sequence alignment analysis showed that these three epitopes were highly conserved among the variants of concern (VOCs) and variants of interest (VOIs). Taken together, the findings provide a potential material for rapid diagnosis methods of COVID-19.


Subject(s)
Epitopes, B-Lymphocyte , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes, B-Lymphocyte/genetics , Humans , Membrane Glycoproteins/genetics , Peptides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
12.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1964012

ABSTRACT

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA- mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3'-5' exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3'-5' exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme's activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol-1) and circular dichroism spectra > 60 °C indicate the enzyme's moderate thermal stability.


Subject(s)
Bacteriophages , Thermus thermophilus , Amino Acid Sequence , Bacteriophages/metabolism , DNA-Directed DNA Polymerase/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphodiesterase I/metabolism , Thermus thermophilus/metabolism
13.
Front Immunol ; 13: 859905, 2022.
Article in English | MEDLINE | ID: covidwho-1963444

ABSTRACT

Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing ß-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRß1* (HLA-DRß1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRß1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.


Subject(s)
COVID-19 , Malaria Vaccines , Amino Acid Sequence , COVID-19 Vaccines , Histocompatibility Antigens Class II/genetics , Humans , Imidazoles , Peptides , SARS-CoV-2/genetics , Sulfonamides , Thiophenes
14.
J Biomed Nanotechnol ; 18(4): 1158-1163, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1950560

ABSTRACT

Herein, we designed a nano peptide that contains three important motifs for targeting the chemotrypsin-like cysteine protease (3CLpro) which is the enzyme responsible for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) replication. The novel nano peptide contains the Nap Phe-Phe motif that is responsible for peptide self-assembly, an octapeptide (Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe) motif where the enzyme recognizes the substrate and induces enzyme sensitivity, and a tetrapeptide motif which is positively charged containing the peptide (Lys)4 that facilitates penetration into a cell. The nano peptide was characterized using Proton Nuclear Magnetic Resonance (H-NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) to confirm its structure. In vitro results showed that the presently formulated nano peptide was not cytotoxic to fibroblasts for up to 72 hours, bound to 3CLpro, inhibited SARS-CoV-2 Omicron variant virus replication, and was stable for binding for up to one week in culture. In this manner, this timely study demonstrates that this novel nano peptide should be studied for a wide range of Coronavirus Disease (COVID-19) prophylactic or therapeutic applications.


Subject(s)
COVID-19 , Peptide Hydrolases , Amino Acid Sequence , Conserved Sequence , Humans , Peptide Fragments , Peptides , SARS-CoV-2
15.
J Biomed Nanotechnol ; 18(4): 1121-1130, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1950558

ABSTRACT

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused significant death, economic crisis, and the world to almost completely shut down. This present study focused on targeting the novel SARS-CoV-2 envelope protein, which has not been frequently mutating, and the S protein with a much larger peptide capable of inhibiting virus-mammalian cell attraction. In doing so, molecular dynamics software was used here to model six peptides including: NapFFTLUFLTUTE, NapFFSLAFLTATE, NapFFSLUFLSUTE, NapFFTLAFLTATE, NapFFSLUFLSUSE, and NapFFMLUFLMUME. Results showed that two of these completely hydrophobic peptides (NapFFTLUFLTUTE and NapFFMLUFLMUME) had a strong ability to bind to the virus, preventing its binding to a mammalian cell membrane, entering the cell, and replicating by covering many cell attachment sites on SARS-CoV-2. Further cell modeling results demonstrated the low toxicity and suitable pharmacokinetic properties of both peptides making them ideal for additional in vitro and in vivo investigation. In this manner, these two peptides should be further explored for a wide range of present and future COVID-19 therapeutic and prophylactic applications.


Subject(s)
COVID-19 , Nanostructures , Amino Acid Sequence , Animals , Mammals/metabolism , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: covidwho-1924204

ABSTRACT

Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Amino Acid Sequence , Cell Membrane/metabolism , Humans , Peptides/metabolism , SARS-CoV-2 , Trypsin/metabolism
17.
PLoS One ; 17(2): e0263582, 2022.
Article in English | MEDLINE | ID: covidwho-1910522

ABSTRACT

The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.


Subject(s)
Coronavirus Infections/virology , Coronavirus M Proteins/chemistry , Porcine epidemic diarrhea virus/chemistry , Swine Diseases/virology , Swine/virology , Amino Acid Sequence , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus M Proteins/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Models, Molecular , Porcine epidemic diarrhea virus/immunology , Protein Conformation , Swine Diseases/immunology
18.
Virology ; 573: 84-95, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895491

ABSTRACT

The world health organization has announced that SARS-CoV-2 Omicron variant (B.1.1.529), including the three versions; 21K (BA.1), 21L (BA.2) and 21M (BA.3) as a variant of concern (VOC) on November 2022. In this study, we used the specialized computational platforms to predict the stability and flexibility of the spike protein of Omicron. The aim of this study was to investigate the expected effect of Omicron spike mutations on its physiochemical properties. Findings of this study revealed 16 stabilizing mutations that might explain a newly gained environmental stability. We expect the new mutations to play a crucial role in changing the physiochemical properties of epitopes of the spike protein. The notable finding of SuerPose work was the potential linear B-cells epitope G252 → S255 that has been changed in the spike protein of the Omicron 21L to a helix structure which might confer an escape from human monoclonal antibodies.


Subject(s)
COVID-19 , Epitopes, B-Lymphocyte , Amino Acid Sequence , Antibodies, Viral , Epitopes, B-Lymphocyte/genetics , Humans , Membrane Glycoproteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
19.
J Immunol ; 208(12): 2675-2685, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1863025

ABSTRACT

The adaptive immune receptor repertoire consists of the entire set of an individual's BCRs and TCRs and is believed to contain a record of prior immune responses and the potential for future immunity. Analyses of TCR repertoires via deep learning (DL) methods have successfully diagnosed cancers and infectious diseases, including coronavirus disease 2019. However, few studies have used DL to analyze BCR repertoires. In this study, we collected IgG H chain Ab repertoires from 276 healthy control subjects and 326 patients with various infections. We then extracted a comprehensive feature set consisting of 10 subsets of repertoire-level features and 160 sequence-level features and tested whether these features can distinguish between infected individuals and healthy control subjects. Finally, we developed an ensemble DL model, namely, DL method for infection diagnosis (https://github.com/chenyuan0510/DeepID), and used this model to differentiate between the infected and healthy individuals. Four subsets of repertoire-level features and four sequence-level features were selected because of their excellent predictive performance. The DL method for infection diagnosis outperformed traditional machine learning methods in distinguishing between healthy and infected samples (area under the curve = 0.9883) and achieved a multiclassification accuracy of 0.9104. We also observed differences between the healthy and infected groups in V genes usage, clonal expansion, the complexity of reads within clone, the physical properties in the α region, and the local flexibility of the CDR3 amino acid sequence. Our results suggest that the Ab repertoire is a promising biomarker for the diagnosis of various infections.


Subject(s)
COVID-19 , Deep Learning , Amino Acid Sequence , COVID-19/diagnosis , Humans , Receptors, Antigen, T-Cell
20.
Int Immunopharmacol ; 108: 108847, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851320

ABSTRACT

BACKGROUND: Different quickly-developed vaccines are introduced against COVID-19 with inconclusive results especially against some recent variants. Eventually, somewhere COVID-19 cases decline and in some countries it revived with some new mutant-variants (i.e. D614G, Delta and Omicron). OBJECTIVES: Proposing a universal vaccination strategy by screening globally-conserved SARS-CoV-2 spike-epitopes. METHODS: Presently, several conserved (186-countries) sequences including multiple-variants (ClustalX2) epitopic-regions (SVMTriP and IEDB) and in-silico mutants of SARS-CoV-2 spike-protein-fragments (Cut1-4) were screened for their stability against proteases, antigenicity (VaxiJen V2.0 and for glycosylation effects NetOGlyc-NetNGlyc), MHCI/II reactivity (IEDB-TOOLS) and CD4+ responses by molecular-docking (Haddock2.4/PatchDock). We also examined Molecular-Dynamic-Simulation (myPresto verson-5) of MHC-II 3LQZ with 3-Cuts and T-cell 2-molecules (1KGC/4JRX) with SM3-Cut. The MD-simulation was run with 5000-cycles after 300 k-heating/1-atm pressure adjustment for the system-equilibration. Finally, 1000 fs production was run. RESULTS: The cut4-mutant (SRLFRKSNLKPFERD) showed the highest combined-score 48.23548 and Immunogenicity-Score of 92.0887. The core-sequence SRLFRKSNL showed the highest Median-Percentile-Rank (7-HLA-allele) of 19. CD4+ immunogenicity also confirms the representation of the CUT4TM2 epitope SRLFRKSNL by MHC Class II. The epitope YNYKYRLFR from CUT4 showed an IC50 of ∼30 nM with allele HLA-DRB1*11:01 and HLA-DRB5*01:01 with plenty H-bonding. Cut4 double-mutants strongly interact with the exposed T-cell surface and are facilitated by its receptors. The MD-simulation data suggest that TM2 has a maximum RMSD value of 1.7 Å, DM2 is at 1.55 Å and SM3 is at 1.5 Å. These variations correspond to structural adjustments and involve binding/unbinding chemical interactions. The RMSD plot shows that 1KGC T-cell molecule is at 2.2 Å and the 4JRX is at 1.2 Å, which increases with the simulation time. CONCLUSIONS: Screening of conserved SARS-CoV-2 spike fragments helps to find the most stable antigenic-determinant which with some mutations showed better antigenicity. Further studies are necessary to develop global vaccination strategies against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes, T-Lymphocyte , Macrophages , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Macrophages/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL