ABSTRACT
Quaternary ammonium compounds (QACs) are one type of widely used cationic biocide, and their usage amount is growing rapidly due to the flu and COVID-19 pandemic. Many QACs were released into the environment in or after the course of their use, and thus they were widely detected in water, sediment, soil, and other environmental media. QACs have stronger surface activity and non-specific biotoxicity, which poses a potential threat to the ecosystem. In this study, the environmental fate and potential toxicity of QACs were documented in terms of their migration and transformation process, biological toxicity effects, and the main mechanisms of bacterial resistance to QACs. Aerobic biodegradation was the main natural way of eliminating QACs in the environment, and the reaction was mainly initiated by the hydroxylation of C atoms at different positions of QACs and finally mineralized to CO2and H2O through decarboxylation, demethylation, and ß-oxidation reaction. Toxicological studies showed that QACs at environmental concentrations could not pose acute toxicity to the selected biotas but threatened the growth and reproduction of aquatic organisms like Daphnia magna. Their toxicity effects depended on their molecular structure, the tested species, and the exposed durations. Additionally, our team first investigated the toxicity effects and mechanisms of QACs toward Microcystis aeruginosa, which showed that QACs depressed the algae growth through the denaturation of photosynthetic organelles, suppression of electron transport, and then induction of cell membrane damage. In the environment, the concentrations of QACs were always lower than their bactericidal concentrations, and their degradation could induce the formation of a concentration gradient, which facilitated microbes resistant to QACs. The known resistance mechanisms of bacteria to QACs mainly included the change in cell membrane structure and composition, formation of biofilm, overexpression of the efflux pump gene, and acquisition of resistance genes. Due to the similar targets and mechanisms, QACs could also induce the occurrence of antibiotic resistance, mainly through co-resistance and cross-resistance. Based on the existing data, future research should emphasize the toxicity effect and the potential QACs resistance mechanism of microorganisms in real environmental conditions.
Subject(s)
Ammonium Compounds , COVID-19 , Humans , Ecosystem , Pandemics , Quaternary Ammonium Compounds/toxicity , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/pharmacologyABSTRACT
Since the year 2020, the use of plastic as a strategy to mitigate the spread of COVID-19 disease has been given substantial attention. Global environmental contamination of plastic creates waste and is a known threat to soil ecosystems as a main sink of microplastics. However, there is still considerable uncertainty about microplastics controlling soil properties alteration. Therefore, we carried out an incubation experiment with soil and Carex stenophylla Wahlenb., which are the dominant soil and grass species in semi-arid regions. We investigated the effect of polymer polyethylene terephthalate (PET) concentrations (0%, 1%, 3%, and 5%) on C. stenophylla growth and soil ammonium-N and nitrate-N, organic matter content, pH, soil aggregates, and soil respiration. When soils were exposed to PET microplastics, fewer seeds germinated (62.8 ± 32%) but not significantly (p value > 0.05) when soils were treated to 0, 1, 3, and 0.5% PET. Shoot height was also not effectively reduced with PET. The soil pH was considerably lower when exposed to higher PET compared to all other treatments with the soil exposed to 5% w/w PET for both unplanted and planted, being 0.84 and 0.54 units, respectively, lower than the controls. The soil microbial respiration under exposure to PET was considerably increased in comparison to control samples. Moreover, the presence of PET resulted in potential alterations of soil stability, and with PET present soil stability increased. In conclusion, PET microplastics cannot significantly affect the development of C. stenophylla but could affect crucial soil properties. In addition, changes occurred with increased variability in soil ammonium-N and nitrate-N, particularly at a high PET ratio.
Subject(s)
Ammonium Compounds , COVID-19 , Ecosystem , Microplastics , Nitrates , Plastics , Poaceae , Polyethylene Terephthalates , Soil/chemistryABSTRACT
BACKGROUND: Quaternary ammonium compounds (QACs), commonly used in cleaning, disinfecting, and personal care products, have recently gained worldwide attention due to the massive use of disinfectants during the COVID-19 pandemic. However, despite extensive use of these chemicals, no studies have focused on the analysis of QACs in human milk, a major route of exposure for infants. OBJECTIVE: Our objectives were to identify and measure QACs in breast milk and evaluate early-life exposure to this group of compounds for nursing infants. METHODS: Eighteen QACs, including 6 benzylalkyldimethyl ammonium compounds (BACs, with alkyl chain lengths of C8-C18), 6 dialkyldimethyl ammonium compounds (DDACs, C8-C18), and 6 alkyltrimethyl ammonium compounds (ATMACs, C8-C18), were measured in breast milk samples collected from U.S. mothers. Daily lactational intake was estimated based on the determined concentrations for 0-12 month old nursing infants. RESULTS: Thirteen of the 18 QACs were detected in breast milk and 7 of them were found in more than half of the samples. The total QAC concentrations (ΣQAC) ranged from 0.33 to 7.4 ng/mL (median 1.5 ng/mL). The most abundant QAC was C14-BAC with a median concentration of 0.45 ng/mL. The highest median ΣQAC estimated daily intake (EDI) was determined for <1-month old infants based on the average (using the median concentration) and high (using the 95th percentile concentration) exposure scenarios (230 and 750 ng/kg body weight/day, respectively). SIGNIFICANCE: Our findings provide the first evidence of the detection of several QACs in breast milk and identify breastfeeding as an exposure pathway to QACs for nursing infants. IMPACT STATEMENT: Our findings provide the first evidence of QAC occurrence in breast milk and identify breastfeeding as one of the exposure pathways to QACs for nursing infants.