Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Protein Cell ; 13(8): 602-614, 2022 08.
Article in English | MEDLINE | ID: covidwho-1777862

ABSTRACT

The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 , Amyloidogenic Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cytoplasmic Granules/metabolism , Mammals , SARS-CoV-2 , Stress Granules
2.
Int J Mol Sci ; 22(13)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1288901

ABSTRACT

A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04-5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.


Subject(s)
C9orf72 Protein/genetics , COVID-19/pathology , Microsatellite Repeats , Adult , Age Factors , Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , COVID-19/genetics , COVID-19/virology , Female , Genetic Predisposition to Disease , Genotype , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
3.
4.
Eur J Neurol ; 27(7): 1304-1309, 2020 07.
Article in English | MEDLINE | ID: covidwho-710192

ABSTRACT

BACKGROUND AND PURPOSE: The aim of our study was to describe patients with the p.D12Y variant (previously reported as D11Y) in SOD1 showing heterogeneous clinicopathological features. METHODS: We performed clinical, electrophysiological, magnetic resonance imaging (MRI) and muscle pathology studies in four SOD1 p.D12Y variant-positive patients. RESULTS: The SOD1 p.D12Y clinical manifestations ranged from a benign phenotype characterized by distal distribution of muscular weakness and long survival to classic forms of amyotrophic lateral sclerosis with poor prognosis. Two patients with the distal clinical phenotype showed MRI and muscle pathology alterations indicating a concurrent muscle involvement. In one of these patients significant myopathic changes were associated with rimmed vacuolar pathology. CONCLUSIONS: We expand the clinical spectrum of SOD1 p.D12Y variant, including predominant lower motor neuron forms with long survival and classic forms with aggressive course. Some patients may have concomitant distal myopathy without other explanations. Given clinical, MRI and muscle pathology alterations, SOD1 should be considered in the differential diagnosis of molecularly undefined distal myopathies with rimmed vacuoles.


Subject(s)
Amyotrophic Lateral Sclerosis , Distal Myopathies , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Genetic Variation , Humans , Motor Neurons , Muscle Weakness , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL