Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Allergy Asthma Proc ; 42(6): 506-514, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1533595

ABSTRACT

Background: Patients with hereditary angioedema (HAE) have been postulated to be at increased risk for coronavirus disease 2019 (COVID-19) infection due to inherent dysregulation of the plasma kallikrein-kinin system. Only limited data have been available to explore this hypothesis. Objective: To assess the interrelationship(s) between COVID-19 and HAE. Methods: Self-reported COVID-19 infection, complications, morbidity, and mortality were surveyed by using an online questionnaire. The participants included subjects with HAE with C1 inhibitor (C1INH) deficiency (HAE-C1INH) and subjects with HAE with normal C1-inhibitor (HAE-nl-C1INH), and household controls (normal controls). The impact of HAE medications was examined. Results: A total of 1162 participants who completed the survey were analyzed, including: 695 subjects with HAE-C1INH, 175 subjects with HAE-nl-C1INH, and 292 normal controls. The incidence of reported COVID-19 was not significantly different between the normal controls (9%) and the subjects with HAE-C1INH (11%) but was greater in the subjects with HAE-nl-C1INH (19%; p = 0.006). Obesity was positively correlated with COVID-19 across the overall population (p = 0.012), with a similar but nonsignificant trend in the subjects with HAE-C1INH. Comorbid autoimmune disease was a risk factor for COVID-19 in the subjects with HAE-C1INH (p = 0.047). COVID-19 severity and complications were similar in all the groups. Reported COVID-19 was reduced in the subjects with HAE-C1INH who received prophylactic subcutaneous C1INH (5.6%; p = 0.0371) or on-demand icatibant (7.8%; p = 0.0016). The subjects with HAE-C1INH and not on any HAE medications had an increased risk of COVID-19 compared with the normal controls (24.5%; p = 0.006). Conclusion: The subjects with HAE-C1INH who were not taking HAE medications had a significantly higher rate of reported COVID-19 infection. Subcutaneous C1INH and icatibant use were associated with a significantly reduced rate of reported COVID-19. The results implicated potential roles for the complement cascade and tissue kallikrein-kinin pathways in the pathogenesis of COVID-19 in patients with HAE-C1INH.


Subject(s)
Angioedema/metabolism , Angioedemas, Hereditary/complications , Bradykinin/metabolism , COVID-19/diagnosis , Complement C1 Inactivator Proteins/genetics , Complement C1 Inhibitor Protein/genetics , Hereditary Angioedema Types I and II/metabolism , Angioedemas, Hereditary/drug therapy , Angioedemas, Hereditary/epidemiology , Angiotensin-Converting Enzyme 2 , Case-Control Studies , Humans , Incidence , Kallikreins , SARS-CoV-2
2.
Elife ; 92020 04 27.
Article in English | MEDLINE | ID: covidwho-1344522

ABSTRACT

COVID-19 patients can present with pulmonary edema early in disease. We propose that this is due to a local vascular problem because of activation of bradykinin 1 receptor (B1R) and B2R on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2 that next to its role in RAAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the B1R. Without ACE2 acting as a guardian to inactivate the ligands of B1R, the lung environment is prone for local vascular leakage leading to angioedema. Here, we hypothesize that a kinin-dependent local lung angioedema via B1R and eventually B2R is an important feature of COVID-19. We propose that blocking the B2R and inhibiting plasma kallikrein activity might have an ameliorating effect on early disease caused by COVID-19 and might prevent acute respiratory distress syndrome (ARDS). In addition, this pathway might indirectly be responsive to anti-inflammatory agents.


The COVID-19 pandemic represents an unprecedented threat to global health. Millions of cases have been confirmed around the world, and hundreds of thousands of people have lost their lives. Common symptoms include a fever and persistent cough and COVID-19 patients also often experience an excess of fluid in the lungs, which makes it difficult to breathe. In some cases, this develops into a life-threatening condition whereby the lungs cannot provide the body's vital organs with enough oxygen. The SARS-CoV-2 virus, which causes COVID-19, enters the lining of the lungs via an enzyme called the ACE2 receptor, which is present on the outer surface of the lungs' cells. The related coronavirus that was responsible for the SARS outbreak in the early 2000s also needs the ACE2 receptor to enter the cells of the lungs. In SARS, the levels of ACE2 in the lung decline during the infection. Studies with mice have previously revealed that a shortage of ACE2 leads to increased levels of a hormone called angiotensin II, which regulates blood pressure. As a result, much attention has turned to the potential link between this hormone system in relation to COVID-19. However, other mouse studies have shown that ACE2 protects against a build-up of fluid in the lungs caused by a different molecule made by the body. This molecule, which is actually a small fragment of a protein, lowers blood pressure and causes fluid to leak out of blood vessels. It belongs to a family of molecules known as kinins, and ACE2 is known to inactivate certain kinins. This led van de Veerdonk et al. to propose that the excess of fluid in the lungs seen in COVID-19 patients may be because kinins are not being neutralized due to the shortage of the ACE2 receptor. This had not been hypothesized before, even though the mechanism could be the same in SARS which has been researched for the past 17 years. If this hypothesis is correct, it would mean that directly inhibiting the receptor for the kinins (or the proteins that they come from) may be the only way to stop fluid leaking into the lungs of COVID-19 patients in the early stage of disease. This hypothesis is unproven, and more work is needed to see if it is clinically relevant. If that work provides a proof of concept, it means that existing treatments and registered drugs could potentially help patients with COVID-19, by preventing the need for mechanical ventilation and saving many lives.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Drug Development , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Angioedema/drug therapy , Angioedema/metabolism , Angioedema/pathology , Anti-Inflammatory Agents/therapeutic use , Betacoronavirus/physiology , Bradykinin Receptor Antagonists/therapeutic use , COVID-19 , Coronavirus Infections/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Kallikreins/metabolism , Kinins/metabolism , Lung/metabolism , Lung/pathology , Pandemics , Pneumonia, Viral/metabolism , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B2/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2 , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL