Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Acta Neuropathol Commun ; 10(1): 14, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1690864

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with an increased risk of thrombotic events. Ischemic stroke in COVID-19 patients entails high severity and mortality rates. Here we aimed to analyze cerebral thrombi of COVID-19 patients with large vessel occlusion (LVO) acute ischemic stroke to expose molecular evidence for SARS-CoV-2 in the thrombus and to unravel any peculiar immune-thrombotic features. We conducted a systematic pathological analysis of cerebral thrombi retrieved by endovascular thrombectomy in patients with LVO stroke infected with COVID-19 (n = 7 patients) and non-covid LVO controls (n = 23). In thrombi of COVID-19 patients, the SARS-CoV-2 docking receptor ACE2 was mainly expressed in monocytes/macrophages and showed higher expression levels compared to controls. Using polymerase chain reaction and sequencing, we detected SARS-CoV-2 Clade20A, in the thrombus of one COVID-19 patient. Comparing thrombus composition of COVID-19 and control patients, we noted no overt differences in terms of red blood cells, fibrin, neutrophil extracellular traps (NETs), von Willebrand Factor (vWF), platelets and complement complex C5b-9. However, thrombi of COVID-19 patients showed increased neutrophil density (MPO+ cells) and a three-fold higher Neutrophil-to-Lymphocyte Ratio (tNLR). In the ROC analysis both neutrophils and tNLR had a good discriminative ability to differentiate thrombi of COVID-19 patients from controls. In summary, cerebral thrombi of COVID-19 patients can harbor SARS-CoV2 and are characterized by an increased neutrophil number and tNLR and higher ACE2 expression. These findings suggest neutrophils as the possible culprit in COVID-19-related thrombosis.


Subject(s)
Brain Ischemia/immunology , COVID-19/immunology , Immunity, Cellular/physiology , Intracranial Thrombosis/immunology , Neutrophils/immunology , Stroke/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Brain Ischemia/blood , Brain Ischemia/genetics , COVID-19/blood , COVID-19/genetics , Female , Humans , Intracranial Thrombosis/blood , Intracranial Thrombosis/genetics , Male , Mechanical Thrombolysis/methods , Middle Aged , Neutrophils/metabolism , Prospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Stroke/blood , Stroke/genetics
2.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: covidwho-1072179

ABSTRACT

The outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a global catastrophe. The elderly and people with comorbidity are facing a serious complication of the disease. The entry and infection strategy of SARS-CoV-2 in a host cell is raised by an amazing way of angiotensin-converting enzyme (ACE) 2 (ACE2) receptor recognition and imbalance of ACE/ACE2 in various organs, especially in the lungs. Here it has been discussed the role of interferon and protease during the receptor recognition (begining of infection) and followed by the impact of cytokine and hypoxia in the context of the balance of ACE/ACE2. It has also very concisely delineated the biochemistry and mechanism of ACE/ACE2 balance in different stages of infection and its role in comorbidity.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19/epidemiology , COVID-19/etiology , Peptidyl-Dipeptidase A/blood , SARS-CoV-2/pathogenicity , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Comorbidity , Cytokines/metabolism , Host-Pathogen Interactions , Humans , Renin-Angiotensin System/physiology , Virus Internalization , COVID-19 Drug Treatment
3.
Eur J Endocrinol ; 184(4): 543-552, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1067456

ABSTRACT

OBJECTIVE: While evidence on the interface between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the renin-angiotensin-aldosterone-system (RAAS) is accumulating, clinical data on RAAS peptide alteration among coronavirus disease-19 (COVID-19) patients is missing. DESIGN AND METHODS: In this exploratory study, we prospectively included adult patients (aged ≥ 18 years) admitted between February 26 and April 30, 2020 to a tertiary care hospital in Switzerland. We assessed the association of an underlying SARS-CoV-2 infection and equilibrium serum levels of RAAS peptides in hospitalized COVID-19 patients 1:1 propensity-score matched with patients suffering from SARS-CoV-2-negative respiratory infections. Subgroup analyses involved stratification for taking RAAS inhibitors. RESULTS: COVID-19 patients had about 50% lower equilibrium serum RAAS peptide levels as compared with matched controls (angiotensin I: 31.6 vs 66.8 pmol/L, -52.7% (95%CI: -68.5% to -36.9%); angiotensin II: 37.7 vs 92.5 pmol/L, -59.2% (95%CI: -72.1% to -46.3%); angiotensin (1-5): 3.3 vs 6.6 pmol/L, -49.7% (95%CI: -59.2% to -40.2%); angiotensin (1-7): 4.8 vs 7.6 pmol/L, -64.9% (95%CI: -84.5% to -45.3%)). While the plasma renin activity was lower in COVID-19 patients (88.6 vs 207.9 pmol/L, -58.5% (95%CI: -71.4% to -45.6%)), there was no difference of angiotensin-converting enzyme (ACE) and ACE2 plasma activity between the groups. Subgroup analyses revealed a pronounced RAAS peptide profile depression in COVID-19 patients among those not on RAAS inhibitors. CONCLUSIONS: As compared with SARS-CoV-2-negative patients, we found a downregulated RAAS in presence of a SARS-CoV-2 infection. Whether the lower levels of the protective angiotensin (1-5) and (1-7) are linked to adverse outcomes in COVID-19 warrants further investigation.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Peptidyl-Dipeptidase A/blood , Renin/blood , Adrenergic beta-Antagonists/therapeutic use , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Renin-Angiotensin System , SARS-CoV-2
4.
Eur J Endocrinol ; 184(4): 543-552, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1063246

ABSTRACT

OBJECTIVE: While evidence on the interface between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the renin-angiotensin-aldosterone-system (RAAS) is accumulating, clinical data on RAAS peptide alteration among coronavirus disease-19 (COVID-19) patients is missing. DESIGN AND METHODS: In this exploratory study, we prospectively included adult patients (aged ≥ 18 years) admitted between February 26 and April 30, 2020 to a tertiary care hospital in Switzerland. We assessed the association of an underlying SARS-CoV-2 infection and equilibrium serum levels of RAAS peptides in hospitalized COVID-19 patients 1:1 propensity-score matched with patients suffering from SARS-CoV-2-negative respiratory infections. Subgroup analyses involved stratification for taking RAAS inhibitors. RESULTS: COVID-19 patients had about 50% lower equilibrium serum RAAS peptide levels as compared with matched controls (angiotensin I: 31.6 vs 66.8 pmol/L, -52.7% (95%CI: -68.5% to -36.9%); angiotensin II: 37.7 vs 92.5 pmol/L, -59.2% (95%CI: -72.1% to -46.3%); angiotensin (1-5): 3.3 vs 6.6 pmol/L, -49.7% (95%CI: -59.2% to -40.2%); angiotensin (1-7): 4.8 vs 7.6 pmol/L, -64.9% (95%CI: -84.5% to -45.3%)). While the plasma renin activity was lower in COVID-19 patients (88.6 vs 207.9 pmol/L, -58.5% (95%CI: -71.4% to -45.6%)), there was no difference of angiotensin-converting enzyme (ACE) and ACE2 plasma activity between the groups. Subgroup analyses revealed a pronounced RAAS peptide profile depression in COVID-19 patients among those not on RAAS inhibitors. CONCLUSIONS: As compared with SARS-CoV-2-negative patients, we found a downregulated RAAS in presence of a SARS-CoV-2 infection. Whether the lower levels of the protective angiotensin (1-5) and (1-7) are linked to adverse outcomes in COVID-19 warrants further investigation.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Peptidyl-Dipeptidase A/blood , Renin/blood , Adrenergic beta-Antagonists/therapeutic use , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Renin-Angiotensin System , SARS-CoV-2
5.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: covidwho-1027970

ABSTRACT

The outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a global catastrophe. The elderly and people with comorbidity are facing a serious complication of the disease. The entry and infection strategy of SARS-CoV-2 in a host cell is raised by an amazing way of angiotensin-converting enzyme (ACE) 2 (ACE2) receptor recognition and imbalance of ACE/ACE2 in various organs, especially in the lungs. Here it has been discussed the role of interferon and protease during the receptor recognition (begining of infection) and followed by the impact of cytokine and hypoxia in the context of the balance of ACE/ACE2. It has also very concisely delineated the biochemistry and mechanism of ACE/ACE2 balance in different stages of infection and its role in comorbidity.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19/epidemiology , COVID-19/etiology , Peptidyl-Dipeptidase A/blood , SARS-CoV-2/pathogenicity , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Comorbidity , Cytokines/metabolism , Host-Pathogen Interactions , Humans , Renin-Angiotensin System/physiology , Virus Internalization , COVID-19 Drug Treatment
6.
Int J Epidemiol ; 50(1): 75-86, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-990694

ABSTRACT

BACKGROUND: There has been uncertainty about the safety or benefit of angiotensin-converting enzyme (ACE) inhibitors during the COVID-19 pandemic. We used Mendelian randomization using genetic determinants of serum-ACE levels to test whether decreased ACE levels increase susceptibility to SARS-CoV-2 infection or COVID-19 severity, while reducing potential bias from confounding and reverse causation in observational studies. METHODS: Genetic variants strongly associated with ACE levels, which were nearby the ACE gene, were identified from the ORIGIN trial and a separate genome-wide association study (GWAS) of ACE levels from the AGES cohort. The ORIGIN trial included 4147 individuals of European and Latino ancestries. Sensitivity analyses were performed using a study of 3200 Icelanders. Cohorts from the COVID-19 Host Genetics Initiative GWAS of up to 960 186 individuals of European ancestry were used for COVID-19 susceptibility, hospitalization and severe-disease outcome. RESULTS: Genetic variants were identified that explain between 18% and 37% of variance in ACE levels. Using genetic variants from the ORIGIN trial, a standard-deviation decrease in ACE levels was not associated with an increase in COVID-19 susceptibility [odds ratio (OR): 1.02, 95% confidence interval (CI): 0.90, 1.15], hospitalization (OR: 0.86, 95% CI: 0.68, 1.08) or severe disease (OR: 0.74, 95% CI: 0.51, 1.06). Using genetic variants from the AGES cohort, the result was similar for susceptibility (OR: 0.98, 95% CI: 0.89, 1.09), hospitalization (OR: 0.86, 95% CI: 0.66, 1.11) and severity (OR: 0.75, 95% CI: 0.50, 1.14). Multiple-sensitivity analyses led to similar results. CONCLUSION: Genetically decreased serum ACE levels were not associated with susceptibility to, or severity of, COVID-19 disease. These data suggest that individuals taking ACE inhibitors should not discontinue therapy during the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19/blood , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/virology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Pandemics , Risk Factors , Severity of Illness Index , COVID-19 Drug Treatment
7.
Sci Immunol ; 5(54)2020 12 07.
Article in English | MEDLINE | ID: covidwho-963892

ABSTRACT

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
J Thromb Haemost ; 19(1): 46-50, 2021 01.
Article in English | MEDLINE | ID: covidwho-894786

ABSTRACT

There is an urgent need to understand the underlying mechanisms contributing to thrombotic and inflammatory complications during COVID-19. Data from independent groups have identified that platelets are hyperreactive during COVID-19. Platelet hyperreactivity is accompanied by changes in platelet gene expression, and enhanced interactions between platelets and leukocytes. In some patients, SARS-CoV-2 mRNA has been detected in platelets. Together, this suggests that SARS-CoV-2 may interact with platelets. However, controversy remains on which receptors mediate SARS-CoV-2 platelet interactions. Most, but not all, transcriptomic and proteomic analyses fail to observe the putative SARS-CoV-2 receptor, angiotensin converting enzyme-2, or the cellular serine protease necessary for viral entry, TMPRSS2, on platelets and megakaryocytes. Interestingly, platelets express other known SARS-CoV-2 receptors, which induce similar patterns of activation to those observed when platelets are incubated with SARS-CoV-2. This article explores these findings and discusses ongoing areas of controversy and uncertainty with regard to SARS-CoV-2 platelet interactions.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , Blood Platelets/virology , COVID-19/blood , COVID-19/virology , Receptors, Virus/blood , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/physiology , COVID-19/complications , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Megakaryocytes/virology , Models, Biological , Platelet Activation , RNA, Viral/blood , RNA, Viral/genetics , Receptors, Virus/physiology , SARS-CoV-2/genetics , Serine Endopeptidases/blood , Serine Endopeptidases/physiology , Thrombosis/blood , Thrombosis/etiology , Thrombosis/virology , Virus Internalization
9.
Med Hypotheses ; 144: 110272, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-765390

ABSTRACT

Obese individuals seem to be at the highest risk of contracting COVID-19 infection. Furthermore, severity of morbidity and mortality rates are higher in the developed world as compared to the developing world. One probable reason for this difference could be the difference in living conditions and exposure to other infections. Secondly, the difference in food especially, alcohol use may have deteriorating effects superimposed with obesity. Our hypothesis suggests that a combination of alcohol consumption and obesity causes low immunity and makes the individual prone to develop 'cytokine storm' and 'acute respiratory distress syndrome'; the hallmark of COVID-19 mortality and morbidity. Thus, we propose that reducing any one trigger can have a beneficial effect in combating the disease severity.


Subject(s)
Alcohol Drinking , Alcoholism/complications , COVID-19/complications , COVID-19/epidemiology , COVID-19/immunology , Obesity/complications , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/blood , China/epidemiology , Cytokines/immunology , Humans , Immune System , Inflammation , Interleukin-8/blood , Treatment Outcome , Tumor Necrosis Factor-alpha/blood
10.
J Endocrinol Invest ; 44(5): 951-956, 2021 May.
Article in English | MEDLINE | ID: covidwho-763952

ABSTRACT

BACKGROUND: The recent emergence of COVID-19 poses a global health emergency. One of the most frequently reported data is sex-related severity and mortality: according to the last available analysis on 239,709 patients in Italy, lethality is 17.7% in men and 10.8% in women, with 59% of total deaths being men. Interestingly, the infection rate is lower in males than in females, with 45.8% and 54.2% of positive cases, respectively, suggesting that gender-related factor may worsen disease evolution. A tentative hypothesis to explain these findings is the role of angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 involved in viral infection. PURPOSE: In this review, we summarize the available evidence pointing to gender-related differences in ACE2 and TMPRSS2 expression, from both genetic and endocrine points of view. RESULTS: Altogether, available evidence points toward two not-mutually exclusive mechanisms in gender susceptibility to COVID-19 by sex hormonal regulation of ACE2 and TMPRSS2. On one hand, ACE2 expression could be increased in women, either by estrogens or constitutively by X chromosome inactivation escape or by reduced methylation, providing a larger reservoir of ACE2 to maintain the fundamental equilibrium of RAS regulatory axis. On the other, low levels of androgens in women may keep at low levels TMPRSS2 expression, representing a further protective factor for the development of COVID-19 infection, despite the increased expression of ACE2, which represents the Trojan horse for SARS-CoV-2 entry. CONCLUSIONS: Both mechanisms consistently point to the role of sex hormones and sex chromosomes in the differential severity and lethality of COVID-19 in men and women.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Chromosomes, Human, X/genetics , Genetic Predisposition to Disease/epidemiology , Gonadal Steroid Hormones , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Female , Humans , Male , Serine Endopeptidases/blood , Serine Endopeptidases/genetics , Sex Characteristics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL