Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add filters

Document Type
Year range
1.
PLoS One ; 17(1): e0262657, 2022.
Article in English | MEDLINE | ID: covidwho-1639087

ABSTRACT

BACKGROUND: Tests for SARS-CoV-2 immunity are needed to help assess responses to vaccination, which can be heterogeneous and may wane over time. The plaque reduction neutralization test (PRNT) is considered the gold standard for measuring serum neutralizing antibodies but requires high level biosafety, live viral cultures and days to complete. We hypothesized that competitive enzyme linked immunoassays (ELISAs) based on SARS-CoV-2 spike protein's receptor binding domain (RBD) attachment to its host receptor, the angiotensin converting enzyme 2 receptor (ACE2r), would correlate with PRNT, given the central role of RBD-ACE2r interactions in infection and published studies to date, and enable evaluation of vaccine responses. METHODS AND RESULTS: Configuration and development of a competitive ELISA with plate-bound RBD and soluble biotinylated ACE2r was accomplished using pairs of pre/post vaccine serum. When the competitive ELISA was used to evaluate N = 32 samples from COVID-19 patients previously tested by PRNT, excellent correlation in IC50 results were observed (rs = .83, p < 0.0001). When the competitive ELISA was used to evaluate N = 42 vaccinated individuals and an additional N = 13 unvaccinated recovered COVID-19 patients, significant differences in RBD-ACE2r inhibitory activity were associated with prior history of COVID-19 and type of vaccine received. In longitudinal analyses pre and up to 200 days post vaccine, surrogate neutralizing activity increased markedly after primary and booster vaccine doses, but fell substantially, up to <12% maximal levels within 6 months. CONCLUSIONS: A competitive ELISA based on inhibition of RBD-ACE2r attachment correlates well with PRNT, quantifies significantly higher activity among vaccine recipients with prior COVID (vs. those without), and highlights marked declines in surrogate neutralizing activity over a 6 month period post vaccination. The findings raise concern about the duration of vaccine responses and potential need for booster shots.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , /immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Vaccines, Synthetic/administration & dosage , /administration & dosage
2.
J Extracell Vesicles ; 11(1): e12179, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605805

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is mediated by the interaction of the viral spike (S) protein with angiotensin-converting enzyme 2 (ACE2) on the host cell surface. Although a clinical trial testing soluble ACE2 (sACE2) for COVID-19 is currently ongoing, our understanding of the delivery of sACE2 via small extracellular vesicles (sEVs) is still rudimentary. With excellent biocompatibility allowing for the effective delivery of molecular cargos, sEVs are broadly studied as nanoscale protein carriers. In order to exploit the potential of sEVs, we design truncated CD9 scaffolds to display sACE2 on the sEV surface as a decoy receptor for the S protein of SARS-CoV-2. Moreover, to enhance the sACE2-S binding interaction, we employ sACE2 variants. sACE2-loaded sEVs exhibit typical sEVs characteristics and bind to the S protein. Furthermore, engineered sEVs inhibit the entry of wild-type (WT), the globally dominant D614G variant, Beta (K417N-E484K-N501Y) variant, and Delta (L452R-T478K-D614G) variant SARS-CoV-2 pseudovirus, and protect against authentic SARS-CoV-2 and Delta variant infection. Of note, sACE2 variants harbouring sEVs show superior antiviral efficacy than WT sACE2 loaded sEVs. Therapeutic efficacy of the engineered sEVs against SARS-CoV-2 challenge was confirmed using K18-hACE2 mice. The current findings provide opportunities for the development of new sEVs-based antiviral therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Female , HEK293 Cells , Humans , Mice , Protein Binding , Protein Interaction Domains and Motifs
3.
Emerg Microbes Infect ; 11(1): 208-211, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1598042

ABSTRACT

We performed an annotation of 35 mutations in the spike protein of the SARS-CoV-2 Omicron variant. Our analysis of the mutations indicates that Omicron has gained prominent immune evasion and potential for enhanced transmissibility. Previous modeling study has revealed that continued evolution in both immune evasion and enhanced transmissibility by SARS-CoV-2 would compromise vaccines as tools for the pandemic control. To combat the future variants of SARS-CoV-2, the world needs novel antiviral drugs that are effective at curb viral spreading without introducing additional selective pressure towards resistant variants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , Drug Design/methods , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Humans , Immune Evasion , Mutation , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
4.
Signal Transduct Target Ther ; 6(1): 420, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585885

ABSTRACT

COVID-19 is identified as a zoonotic disease caused by SARS-CoV-2, which also can cross-transmit to many animals but not mice. Genetic modifications of SARS-CoV-2 or mice enable the mice susceptible to viral infection. Although neither is the natural situation, they are currently utilized to establish mouse infection models. Here we report a direct contact transmission of SARS-CoV-2 variant B.1.351 in wild-type mice. The SARS-CoV-2 (B.1.351) replicated efficiently and induced significant pathological changes in lungs and tracheas, accompanied by elevated proinflammatory cytokines in the lungs and sera. Mechanistically, the receptor-binding domain (RBD) of SARS-CoV-2 (B.1.351) spike protein turned to a high binding affinity to mouse angiotensin-converting enzyme 2 (mACE2), allowing the mice highly susceptible to SARS-CoV-2 (B.1.351) infection. Our work suggests that SARS-CoV-2 (B.1.351) expands the host range and therefore increases its transmission route without adapted mutation. As the wild house mice live with human populations quite closely, this possible transmission route could be potentially risky. In addition, because SARS-CoV-2 (B.1.351) is one of the major epidemic strains and the mACE2 in laboratory-used mice is naturally expressed and regulated, the SARS-CoV-2 (B.1.351)/mice could be a much convenient animal model system to study COVID-19 pathogenesis and evaluate antiviral inhibitors and vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Host-Pathogen Interactions/genetics , Receptors, Virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains , Receptors, Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Virus Replication
5.
Signal Transduct Target Ther ; 6(1): 439, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585883

ABSTRACT

The development of animal models for COVID-19 is essential for basic research and drug/vaccine screening. Previously reported COVID-19 animal models need to be established under a high biosafety level condition for the utilization of live SARS-CoV-2, which greatly limits its application in routine research. Here, we generate a mouse model of COVID-19 under a general laboratory condition that captures multiple characteristics of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) observed in humans. Briefly, human ACE2-transgenic (hACE2) mice were intratracheally instilled with the formaldehyde-inactivated SARS-CoV-2, resulting in a rapid weight loss and detrimental changes in lung structure and function. The pulmonary pathologic changes were characterized by diffuse alveolar damage with pulmonary consolidation, hemorrhage, necrotic debris, and hyaline membrane formation. The production of fatal cytokines (IL-1ß, TNF-α, and IL-6) and the infiltration of activated neutrophils, inflammatory monocyte-macrophages, and T cells in the lung were also determined, suggesting the activation of an adaptive immune response. Therapeutic strategies, such as dexamethasone or passive antibody therapy, could effectively ameliorate the disease progression in this model. Therefore, the established mouse model for SARS-CoV-2-induced ARDS in the current study may provide a robust tool for researchers in the standard open laboratory to investigate the pathological mechanisms or develop new therapeutic strategies for COVID-19 and ARDS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Lung/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Respiratory Distress Syndrome/genetics
6.
Front Endocrinol (Lausanne) ; 12: 726696, 2021.
Article in English | MEDLINE | ID: covidwho-1581362

ABSTRACT

Epidemiological evidence shows clear gender disparities in the Coronavirus 2019 Disease (COVID-19) severity and fatality. This may reflect the contribution of gender-related factors, such as sex hormones, to COVID-19 pathogenesis. However, the mechanism linking gender disparities to COVID-19 severity is still poorly understood. In this review, we will pinpoint several elements involved in COVID-19 pathogenesis that are regulated by the two main sex hormones, estrogen and androgen. These include tissue specific gene regulation of SARS-CoV2 entry factors, innate and adaptive immune responses to infection, immunometabolism, and susceptibility to tissue injury by cytopathic effect or hyper-inflammatory response. We will discuss the mechanistic link between sex hormone regulation of COVID-19 pathogenetic factors and disease severity. Finally, we will summarize current evidence from clinical studies and trials targeting sex hormones and their signalling in COVID-19. A better understanding of the role of sex hormones in COVID-19 may identify targets for therapeutic intervention and allow optimization of treatment outcomes towards gender-based personalised medicine.


Subject(s)
Androgens/immunology , COVID-19/immunology , Estrogens/immunology , SARS-CoV-2/immunology , Androgens/metabolism , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Estrogens/metabolism , Female , Humans , Male , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sex Factors , Virus Internalization
7.
Cells ; 11(1)2022 01 03.
Article in English | MEDLINE | ID: covidwho-1580990

ABSTRACT

Extracellular vesicles (EVs) and viruses share common features: size, structure, biogenesis and uptake. In order to generate EVs expressing the SARS-CoV-2 spike protein on their surface (S-EVs), we collected EVs from SARS-CoV-2 spike expressing human embryonic kidney (HEK-293T) cells by stable transfection with a vector coding for the S1 and S2 subunits. S-EVs were characterized using nanoparticle tracking analysis, ExoView and super-resolution microscopy. We obtained a population of EVs of 50 to 200 nm in size. Spike expressing EVs represented around 40% of the total EV population and co-expressed spike protein with tetraspanins on the surfaces of EVs. We subsequently used ACE2-positive endothelial and bronchial epithelial cells for assessing the internalization of labeled S-EVs using a cytofluorimetric analysis. Internalization of S-EVs was higher than that of control EVs from non-transfected cells. Moreover, S-EV uptake was significantly decreased by anti-ACE2 antibody pre-treatment. Furthermore, colchicine, a drug currently used in clinical trials, significantly reduced S-EV entry into the cells. S-EVs represent a simple, safe, and scalable model to study host-virus interactions and the mechanisms of novel therapeutic drugs.


Subject(s)
COVID-19/metabolism , Extracellular Vesicles/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Blocking/pharmacology , COVID-19/virology , Cell Line , Cells, Cultured , Colchicine/pharmacology , Flow Cytometry/methods , HEK293 Cells , Host Microbial Interactions/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/virology , Humans , Microscopy, Fluorescence/methods , Protein Binding/drug effects , SARS-CoV-2/physiology
8.
Rev Med Virol ; 31(6): e2221, 2021 11.
Article in English | MEDLINE | ID: covidwho-1575100

ABSTRACT

The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , C-Reactive Protein/antagonists & inhibitors , COVID-19/drug therapy , Complement System Proteins/immunology , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/pathogenicity , ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/genetics , ADAM17 Protein/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Biomarkers/blood , C-Reactive Protein/genetics , C-Reactive Protein/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Celecoxib/therapeutic use , Complement System Proteins/genetics , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Disease Progression , Doxycycline/therapeutic use , Gene Expression Regulation , Humans , Randomized Controlled Trials as Topic , Severity of Illness Index , Survival Analysis
9.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570773

ABSTRACT

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virion/drug effects , Virion/pathogenicity , Virion/ultrastructure
10.
Life Sci Alliance ; 5(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1547941

ABSTRACT

The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Microfluidics/methods , SARS-CoV-2/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , Antibody Affinity , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/blood , COVID-19/etiology , Cross Reactions , Female , Humans , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance
11.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1526454

ABSTRACT

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/immunology , COVID-19 Vaccines/immunology , Crystallography, X-Ray , Disease Models, Animal , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Domains and Motifs/immunology , Viral Load/drug effects
12.
PLoS One ; 16(11): e0260283, 2021.
Article in English | MEDLINE | ID: covidwho-1523456

ABSTRACT

SARS-CoV-2 viral attachment and entry into host cells is mediated by a direct interaction between viral spike glycoproteins and membrane bound angiotensin-converting enzyme 2 (ACE2). The receptor binding motif (RBM), located within the S1 subunit of the spike protein, incorporates the majority of known ACE2 contact residues responsible for high affinity binding and associated virulence. Observation of existing crystal structures of the SARS-CoV-2 receptor binding domain (SRBD)-ACE2 interface, combined with peptide array screening, allowed us to define a series of linear native RBM-derived peptides that were selected as potential antiviral decoy sequences with the aim of directly binding ACE2 and attenuating viral cell entry. RBM1 (16mer): S443KVGGNYNYLYRLFRK458, RBM2A (25mer): E484GFNCYFPLQSYGFQPTNGVGYQPY508, RBM2B (20mer): F456NCYFPLQSYGFQPTNGVGY505 and RBM2A-Sc (25mer): NYGLQGSPFGYQETPYPFCNFVQYG. Data from fluorescence polarisation experiments suggested direct binding between RBM peptides and ACE2, with binding affinities ranging from the high nM to low µM range (Kd = 0.207-1.206 µM). However, the RBM peptides demonstrated only modest effects in preventing SRBD internalisation and showed no antiviral activity in a spike protein trimer neutralisation assay. The RBM peptides also failed to suppress S1-protein mediated inflammation in an endogenously expressing ACE2 human cell line. We conclude that linear native RBM-derived peptides are unable to outcompete viral spike protein for binding to ACE2 and therefore represent a suboptimal approach to inhibiting SARS-CoV-2 viral cell entry. These findings reinforce the notion that larger biologics (such as soluble ACE2, 'miniproteins', nanobodies and antibodies) are likely better suited as SARS-CoV-2 cell-entry inhibitors than short-sequence linear peptides.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/pharmacology , Peptides/pharmacology , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , A549 Cells , Humans , Protein Interaction Domains and Motifs
13.
Cell Rep ; 37(3): 109869, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1517084

ABSTRACT

The dramatically expanding coronavirus disease 2019 (COVID-19) needs multiple effective countermeasures. Neutralizing nanobodies (Nbs) are a potential therapeutic strategy for treating COVID-19. Here, we characterize several receptor binding domain (RBD)-specific Nbs isolated from an Nb library derived from an alpaca immunized with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S); among them, three Nbs exhibit picomolar potency against SARS-CoV-2 live virus, pseudotyped viruses, and circulating SARS-CoV-2 variants. To improve their efficacy, various configurations of Nbs are engineered. Nb15-NbH-Nb15, a trimer constituted of three Nbs, is constructed to be bispecific for human serum albumin (HSA) and RBD of SARS-CoV-2. Nb15-NbH-Nb15 exhibits single-digit ng/ml neutralization potency against the wild-type and Delta variants of SARS-CoV-2 with a long half-life in vivo. In addition, we show that intranasal administration of Nb15-NbH-Nb15 provides effective protection for both prophylactic and therapeutic purposes against SARS-CoV-2 infection in transgenic hACE2 mice. Nb15-NbH-Nb15 is a potential candidate for both the prevention and treatment of SARS-CoV-2 through respiratory administration.


Subject(s)
Administration, Intranasal , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Bispecific/immunology , COVID-19/immunology , SARS-CoV-2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Antibodies, Viral/immunology , Camelids, New World , Epitopes/chemistry , Female , Humans , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Domains , Protein Engineering/methods , Serum Albumin, Human/chemistry , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/immunology
14.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1510636

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Computational Biology/methods , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/immunology , COVID-19/immunology , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Mitochondrial Proteins/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , SARS-CoV-2/immunology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
15.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1502440

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains spike proteins that assist the virus in entering host cells. In the absence of a specific intervention, efforts are afoot throughout the world to find an effective treatment for SARS-CoV-2. Through innovative techniques, monoclonal antibodies (MAbs) are being designed and developed to block a particular pathway of SARS-CoV-2 infection. More than 100 patent applications describing the development of MAbs and their application against SARS-CoV-2 have been registered. Most of them target the receptor binding protein so that the interaction between virus and host cell can be prevented. A few monoclonal antibodies are also being patented for the diagnosis of SARS-CoV-2. Some of them, like Regeneron® have already received emergency use authorization. These protein molecules are currently preferred for high-risk patients such as those over 65 years old with compromised immunity and those with metabolic disorders such as obesity. Being highly specific in action, monoclonal antibodies offer one of the most appropriate interventions for both the prevention and treatment of SARS-CoV-2. Technological advancement has helped in producing highly efficacious MAbs. However, these agents are known to induce immunogenic and non-immunogenic reactions. More research and testing are required to establish the suitability of administering MAbs to all patients at risk of developing a severe illness. This patent study is focused on MAbs as a therapeutic option for treating COVID-19, as well as their invention, patenting information, and key characteristics.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/drug therapy , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/diagnosis , COVID-19/virology , Coronavirus M Proteins/immunology , Humans , Patents as Topic , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology
16.
Signal Transduct Target Ther ; 6(1): 378, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500450

ABSTRACT

The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19 , SARS-CoV-2/chemistry , Single-Chain Antibodies/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Mice , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/therapeutic use
17.
J Virol ; 95(19): e0068521, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1486511

ABSTRACT

The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralizing antibody approaches. Furthermore, we report a preclinical characterization package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralization capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: while previous ACE2-based therapeutics have been described, ours has novel features, including (i) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system, (ii) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflammation, and (iii) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic MAb.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/immunology , Antibody-Dependent Enhancement , COVID-19/immunology , HEK293 Cells , Humans , Kinetics , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism
18.
Front Immunol ; 12: 757197, 2021.
Article in English | MEDLINE | ID: covidwho-1485060

ABSTRACT

The recent identification and rise to dominance of the P.1 and B.1.351 SARS-CoV-2 variants have brought international concern because they may confer fitness advantages. The same three positions in the receptor-binding domain (RBD) are affected in both variants, but where the 417 substitution differs, the E484K/N501Y have co-evolved by convergent evolution. Here we characterize the functional and immune evasive consequences of the P.1 and B.1.351 RBD mutations. E484K and N501Y result in gain-of-function with two different outcomes: The N501Y confers a ten-fold affinity increase towards ACE-2, but a modest antibody evasion potential of plasma from convalescent or vaccinated individuals, whereas the E484K displays a significant antibody evasion capacity without a major impact on affinity. On the other hand, the two different 417 substitutions severely impair the RBD/ACE-2 affinity, but in the combined P.1 and B.1.351 RBD variants, this effect is partly counterbalanced by the effect of the E484K and N501Y. Our results suggest that the combination of these three mutations is a two-step forward and one step back in terms of viral fitness.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines , Mutation, Missense , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Adult , Amino Acid Substitution , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Humans , Male , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
MAbs ; 13(1): 1987180, 2021.
Article in English | MEDLINE | ID: covidwho-1483313

ABSTRACT

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Subject(s)
Antibodies, Viral , COVID-19/drug therapy , Receptors, Polymeric Immunoglobulin , SARS-CoV-2/immunology , Single-Chain Antibodies , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , CHO Cells , COVID-19/genetics , COVID-19/immunology , Cricetulus , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mouth Mucosa/immunology , Protein Domains , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/therapeutic use , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Swine
20.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1480801

ABSTRACT

Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.


Subject(s)
Acute Lung Injury/enzymology , Acute Lung Injury/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Immunity, Innate , SARS-CoV-2/immunology , Acute Lung Injury/virology , COVID-19/complications , COVID-19/enzymology , COVID-19/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...