Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.049
Filter
Add filters

Document Type
Year range
1.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544318

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gastrointestinal Tract/virology , Genitalia/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Immune System/virology , Neuropilin-1/metabolism , Respiratory System/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Blotting, Western , COVID-19/metabolism , COVID-19/virology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gastrointestinal Tract/cytology , Genitalia/cytology , Humans , Immune System/cytology , Respiratory System/cytology
2.
Phys Chem Chem Phys ; 23(27): 14873-14888, 2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1541260

ABSTRACT

The COVID-19 disease caused by the virus SARS-CoV-2, first detected in December 2019, is still emerging through virus mutations. Although almost under control in some countries due to effective vaccines that are mitigating the worldwide pandemic, the urgency to develop additional vaccines and therapeutic treatments is imperative. In this work, the natural polyphenols corilagin and 1,3,6-tri-O-galloy-ß-d-glucose (TGG) are investigated to determine the structural basis of inhibitor interactions as potential candidates to inhibit SARS-CoV-2 viral entry into target cells. First, the therapeutic potential of the ligands are assessed on the ACE2/wild-type RBD. We first use molecular docking followed by molecular dynamics, to take into account the conformational flexibility that plays a significant role in ligand binding and that cannot be captured using only docking, and then analyze more precisely the affinity of these ligands using MMPBSA binding free energy. We show that both ligands bind to the ACE2/wild-type RBD interface with good affinities which might prevent the ACE2/RBD association. Second, we confirm the potency of these ligands to block the ACE2/RBD association using a combination of surface plasmon resonance and biochemical inhibition assays. These experiments confirm that TGG and, to a lesser extent, corilagin, inhibit the binding of RBD to ACE2. Both experiments and simulations show that the ligands interact preferentially with RBD, while weak binding is observed with ACE2, hence, avoiding potential physiological side-effects induced by the inhibition of ACE2. In addition to the wild-type RBD, we also study numerically three RBD mutations (E484K, N501Y and E484K/N501Y) found in the main SARS-CoV-2 variants of concerns. We find that corilagin could be as effective for RBD/E484K but less effective for the RBD/N501Y and RBD/E484K-N501Y mutants, while TGG strongly binds at relevant locations to all three mutants, demonstrating the significant interest of these molecules as potential inhibitors for variants of SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Gallic Acid/analogs & derivatives , Glucose/analogs & derivatives , Glucosides/chemistry , Hydrolyzable Tannins/chemistry , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Gallic Acid/chemistry , Glucose/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding/drug effects , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
4.
Diabetes ; 70(9): 2120-2130, 2021 09.
Article in English | MEDLINE | ID: covidwho-1528788

ABSTRACT

Diabetes is a known risk factor for severe coronavirus disease 2019 (COVID-19), the disease caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is a lack of knowledge about the mechanisms involved in the evolution of COVID-19 in individuals with diabetes. We aimed to evaluate whether the chronic low-grade inflammation of diabetes could play a role in the development of severe COVID-19. We collected clinical data and blood samples of patients with and without diabetes hospitalized for COVID-19. Plasma samples were used to measure inflammatory mediators and peripheral blood mononuclear cells, for gene expression analysis of the SARS-CoV-2 main receptor system (ACE2/TMPRSS2), and for the main molecule of the leukotriene B4 (LTB4) pathway (ALOX5). We found that diabetes activates the LTB4 pathway and that during COVID-19 it increases ACE2/TMPRSS2 as well as ALOX5 expression. Diabetes was also associated with COVID-19-related disorders, such as reduced oxygen saturation as measured by pulse oximetry/fraction of inspired oxygen (FiO2) and arterial partial pressure of oxygen/FiO2 levels, and increased disease duration. In addition, the expressions of ACE2 and ALOX5 are positively correlated, with increased expression in patients with diabetes and COVID-19 requiring intensive care assistance. We confirmed these molecular results at the protein level, where plasma LTB4 is significantly increased in individuals with diabetes. In addition, IL-6 serum levels are increased only in individuals with diabetes requiring intensive care assistance. Together, these results indicate that LTB4 and IL-6 systemic levels, as well as ACE2/ALOX5 blood expression, could be early markers of severe COVID-19 in individuals with diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Arachidonate 5-Lipoxygenase/metabolism , COVID-19/pathology , Diabetes Mellitus/pathology , Leukotriene B4/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Arachidonate 5-Lipoxygenase/genetics , COVID-19/metabolism , Gene Expression Regulation , Humans , Inflammation/metabolism , Leukotriene B4/genetics , Risk Factors , Signal Transduction
5.
Int J Biol Sci ; 17(1): 20-31, 2021.
Article in English | MEDLINE | ID: covidwho-1526974

ABSTRACT

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global infection, and is seriously threatening human life, especially cancer patients. Thus, we sought to determine the clinical roles of ACE2 (the cell entry receptor of SARS-CoV-2) in ccRCC (clear cell renal cell carcinoma). TCGA, GEO and TIP datasets, and immunohistochemistry and western blot results were used to determine the prognostic and clinicopathological characteristics of ACE2. ACE2 expression was down-regulated in ccRCC tissues and cell lines. The multivariate Cox regression analysis results indicated that increased ACE2 expression was independent predictor of longer OS (HR: 0.8259, 95%CI: 0.7734-0.8819, P<0.0001) and RFS (HR: 0.8023, 95%CI: 0.7375-0.8729, P<0.0001) in ccRCC patients. Lower ACE2 expression was also associated with advanced tumor stage, higher histological grade and pathological stage, and metastasis. Besides, ACE2 expression was significantly positively and negatively correlated with CD4 Naïve infiltration and CD4 Memory infiltration, respectively. Moreover, higher CD4 Naïve and lower CD4 Memory infiltration levels were associated with better pathological features and longer OS and RFS. Furthermore, high ACE2 expression group in decreased CD4 Naïve, enriched CD4 Naïve and enriched CD4 memory cohort had favorable prognosis. These findings identified that AEC2 was significantly reduced in ccRCC, and decreased ACE2 was related to worse pathological features and poor prognosis. Low ACE2 expression in ccRCC may partially affect the prognosis due to altered immune cells infiltration levels.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Carcinoma, Renal Cell/immunology , Humans , Kidney Neoplasms/immunology , Prognosis , SARS-CoV-2/isolation & purification
6.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: covidwho-1522913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 µM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency-Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects , Virus Replication/drug effects , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Evans Blue/pharmacology , Humans , Molecular Docking Simulation , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sulfones/pharmacology , Surface Plasmon Resonance , Vero Cells
7.
PLoS One ; 16(11): e0259732, 2021.
Article in English | MEDLINE | ID: covidwho-1518359

ABSTRACT

Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are bioactive particles that evoke beneficial responses in recipient cells. We identified a role for MSC-EV in immune modulation and cellular salvage in a model of SARS-CoV-2 induced acute lung injury (ALI) using pulmonary epithelial cells and exposure to cytokines or the SARS-CoV-2 receptor binding domain (RBD). Whereas RBD or cytokine exposure caused a pro-inflammatory cellular environment and injurious signaling, impairing alveolar-capillary barrier function, and inducing cell death, MSC-EVs reduced inflammation and reestablished target cell health. Importantly, MSC-EV treatment increased active ACE2 surface protein compared to RBD injury, identifying a previously unknown role for MSC-EV treatment in COVID-19 signaling and pathogenesis. The beneficial effect of MSC-EV treatment was confirmed in an LPS-induced rat model of ALI wherein MSC-EVs reduced pro-inflammatory cytokine secretion and respiratory dysfunction associated with disease. MSC-EV administration was dose-responsive, demonstrating a large effective dose range for clinical translation. These data provide direct evidence of an MSC-EV-mediated improvement in ALI and contribute new insights into the therapeutic potential of MSC-EVs in COVID-19 or similar pathologies of respiratory distress.


Subject(s)
Acute Lung Injury/complications , Acute Lung Injury/virology , COVID-19/pathology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Pneumonia/complications , Pneumonia/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Disease Models, Animal , Extracellular Vesicles/ultrastructure , Humans , Immunomodulation , Male , Models, Biological , Pneumonia/pathology , Rats, Sprague-Dawley , SARS-CoV-2/physiology , Signal Transduction , THP-1 Cells
8.
Signal Transduct Target Ther ; 6(1): 396, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517609

ABSTRACT

Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Glycosylation , Humans , Peptidyl-Dipeptidase A/genetics , Protein Binding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/genetics , Viral Matrix Proteins/genetics
9.
Sci Rep ; 11(1): 22195, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514424

ABSTRACT

To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin, as well as sugar-free derivatives digitoxigenin and digoxigenin, are high-affinity competitive inhibitors of ACE2 binding to the Original [D614] S1 and the α/ß/γ [D614G] S1 proteins. These drugs also inhibit ACE2 binding to the Original RBD, as well as to RBD proteins containing the ß [E484K], Mink [Y453F] and α/ß/γ [N501Y] mutations. As hypothesized, we also found that ouabain, digitoxin and digoxin blocked penetration by SARS-CoV-2 Spike-pseudotyped virus into human lung cells, and infectivity by native SARS-CoV-2. These data indicate that cardiac glycosides may block viral penetration into the target cell by first inhibiting ACE2:RBD binding. Clinical concentrations of ouabain and digitoxin are relatively safe for short term use for subjects with normal hearts. It has therefore not escaped our attention that these common cardiac medications could be deployed worldwide as inexpensive repurposed drugs for anti-COVID-19 therapy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , Cardiotonic Agents/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , A549 Cells , Animals , COVID-19/metabolism , Chlorocebus aethiops , Digitoxin/pharmacology , Digoxin/pharmacology , Humans , Lung/drug effects , Lung/metabolism , Ouabain/pharmacology , Protein Binding/drug effects , SARS-CoV-2/physiology , Vero Cells
10.
Sci Rep ; 11(1): 22202, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514421

ABSTRACT

SARS-CoV-2 is responsible for COVID-19 pandemic, causing large numbers of cases and deaths. It initiates entry into human cells by binding to the peptidase domain of angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain of S1 subunit of spike protein (SARS-CoV-2-RBD). Employing neutralizing antibodies to prevent binding between SARS-CoV-2-RBD and ACE2 is an effective COVID-19 therapeutic solution. Previous studies found that CC12.3 is a highly potent neutralizing antibody that was isolated from a SARS-CoV-2 infected patient, and its Fab fragment (Fab CC12.3) bound to SARS-CoV-2-RBD with comparable binding affinity to ACE2. To enhance its binding affinity, we employed computational protein design to redesign all CDRs of Fab CC12.3 and molecular dynamics (MD) to validate their predicted binding affinities by the MM-GBSA method. MD results show that the predicted binding affinities of the three best designed Fabs CC12.3 (CC12.3-D02, CC12.3-D05, and CC12.3-D08) are better than those of Fab CC12.3 and ACE2. Additionally, our results suggest that enhanced binding affinities of CC12.3-D02, CC12.3-D05, and CC12.3-D08 are caused by increased SARS-CoV-2-RBD binding interactions of CDRs L1 and L3. This study redesigned neutralizing antibodies with better predicted binding affinities to SARS-CoV-2-RBD than Fab CC12.3 and ACE2. They are promising candidates as neutralizing antibodies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Immunoglobulin Fab Fragments/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Binding Sites , Humans , Immunoglobulin Fab Fragments/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
11.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512382

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with a great impact on social and economic activities, as well as public health. In most patients, the symptoms of COVID-19 are a high-grade fever and a dry cough, and spontaneously resolve within ten days. However, in severe cases, COVID-19 leads to atypical bilateral interstitial pneumonia, acute respiratory distress syndrome, and systemic thromboembolism, resulting in multiple organ failure with high mortality and morbidity. SARS-CoV-2 has immune evasion mechanisms, including inhibition of interferon signaling and suppression of T cell and B cell responses. SARS-CoV-2 infection directly and indirectly causes dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction, which interact with each other and are exacerbated by cardiovascular risk factors. In this review, we summarize current knowledge on the pathogenic basis of thromboinflammation and endothelial injury in COVID-19. We highlight the distinct contributions of dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction to the pathogenesis of COVID-19. In addition, we discuss potential therapeutic strategies targeting these mechanisms.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/physiopathology , Thrombosis/etiology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Blood Coagulation , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Immunity, Innate , Platelet Activation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
12.
Curr Drug Targets ; 22(16): 1832-1843, 2021.
Article in English | MEDLINE | ID: covidwho-1511929

ABSTRACT

ACE2 has long been known as an injury protective protein, which can protect against a variety of organ damage such as the heart, liver, kidney, and lung. Especially in cardiovascular diseases, as a negative regulator of RAAS, ACE2 is an extremely important protective factor that mainly plays a role by converting Ang II to Ang-(1-7). Nevertheless, with the recent outbreak of COVID-19, it is exposed that another identity of ACE2 is the entry receptor for SARS-CoV-2, which previously serves as the entry receptor for SARS. With the in-depth clinical research, it is found that the severity and susceptibility of COVID-19 are related to cardiovascular diseases, and SARS-CoV-2 binding to ACE2 receptor is also potentially associated with heart injury symptoms. Therefore, in this article, we mainly summarize the relationship between ACE2, COVID-19, and cardiovascular diseases/heart injury.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Cardiovascular Diseases , Heart Injuries , COVID-19/pathology , Cardiovascular Diseases/virology , Heart Injuries/virology , Humans
13.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G355-G366, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1511528

ABSTRACT

Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.


Subject(s)
Gastrointestinal Microbiome , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2/metabolism , Animals , Gastrointestinal Absorption , Glucose/metabolism , Humans
14.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1510636

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Computational Biology/methods , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/immunology , COVID-19/immunology , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Mitochondrial Proteins/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , SARS-CoV-2/immunology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
15.
Sci Rep ; 11(1): 22042, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1510622

ABSTRACT

The mutation of SARS-CoV-2 influences viral function as residue replacements affect both physiochemical properties and folding conformations. Although a large amount of data on SARS-CoV-2 is available, the investigation of how viral functions change in response to mutations is hampered by a lack of effective structural analysis. Here, we exploit the advances of protein structure fingerprint technology to study the folding conformational changes induced by mutations. With integration of both protein sequences and folding conformations, the structures are aligned for SARS-CoV to SARS-CoV-2, including Alpha variant (lineage B.1.1.7) and Delta variant (lineage B.1.617.2). The results showed that the virus evolution with change in mutational positions and physicochemical properties increased the affinity between spike protein and ACE2, which plays a critical role in coronavirus entry into human cells. Additionally, these structural variations impact vaccine effectiveness and drug function over the course of SARS-CoV-2 evolution. The analysis of structural variations revealed how the coronavirus has gradually evolved in both structure and function and how the SARS-CoV-2 variants have contributed to more severe acute disease worldwide.


Subject(s)
COVID-19/virology , Evolution, Molecular , Mutation , SARS-CoV-2/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Folding , Protein Interaction Maps , Protein Multimerization , SARS Virus/chemistry , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Article in English | MEDLINE | ID: covidwho-1506691

ABSTRACT

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Host Adaptation , Mink/immunology , Mutation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , Female , Humans , Immunization, Passive/statistics & numerical data , Male , Middle Aged , Mink/virology , Molecular Dynamics Simulation , Netherlands/epidemiology , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Young Adult
17.
Front Endocrinol (Lausanne) ; 12: 725967, 2021.
Article in English | MEDLINE | ID: covidwho-1506113

ABSTRACT

The renin-angiotensin system (RAS) is crucially involved in the physiology and pathology of all organs in mammals. Angiotensin-converting enzyme 2 (ACE2), which is a homolog of ACE, acts as a negative regulator in the homeostasis of RAS. ACE2 has been proven to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic. As SARS-CoV-2 enters the host cells through binding of viral spike protein with ACE2 in humans, the distribution and expression level of ACE2 may be critical for SARS-CoV-2 infection. Growing evidence shows the implication of ACE2 in pathological progression in tissue injury and several chronic conditions such as hypertension, diabetes, and cardiovascular disease; this suggests that ACE2 is essential in the progression and clinical prognosis of COVID-19 as well. Therefore, we summarized the expression and activity of ACE2 under various conditions and regulators. We further discussed its potential implication in susceptibility to COVID-19 and its potential for being a therapeutic target in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , Peptidyl-Dipeptidase A/physiology , Renin-Angiotensin System/physiology , COVID-19/drug therapy , COVID-19/epidemiology , Humans , Molecular Targeted Therapy , Pandemics , SARS-CoV-2
18.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506181

ABSTRACT

COVID-19 is caused by SARS-CoV-2 (SC2) and is more prevalent and severe in elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here, we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor angiotensin converting enzyme 2 (ACE2) and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging, and that anti-CHI3L1, kasugamycin, and inhibitors of phosphorylation abrogate these ACE2- and SPP-inductive events. Human studies also demonstrate that the levels of circulating CHI3L1 are increased in the elderly and patients with CM, where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP, that this induction is a major mechanism contributing to the effects of aging during SC2 infection, and that CHI3L1 co-opts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.


Subject(s)
Aging , COVID-19/metabolism , Chitinase-3-Like Protein 1/metabolism , Aging/drug effects , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , Cell Line, Tumor , Chitinase-3-Like Protein 1/antagonists & inhibitors , HEK293 Cells , Humans , SARS-CoV-2/physiology
19.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1504819

ABSTRACT

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Subject(s)
Alkaloids/chemistry , Geologic Sediments/microbiology , Isoindoles/chemistry , Streptomyces/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Isoindoles/isolation & purification , Isoindoles/metabolism , Isoindoles/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , SARS-CoV-2/isolation & purification , Streptomyces/isolation & purification , Streptomyces/metabolism
20.
Sci Rep ; 11(1): 21725, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1504567

ABSTRACT

SARS-CoV-2 enters the intestine by the spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors in enterocyte apical membranes, leading to diarrhea in some patients. Early treatment of COVID-19-associated diarrhea could relieve symptoms and limit viral spread within the gastrointestinal (GI) tract. Diosmectite, an aluminomagnesium silicate adsorbent clay with antidiarrheal effects, is recommended in some COVID-19 management protocols. In rotavirus models, diosmectite prevents pathogenic effects by binding the virus and its enterotoxin. We tested the trapping and anti-inflammatory properties of diosmectite in a SARS-CoV-2 model. Trapping effects were tested in Caco-2 cells using spike protein receptor-binding domain (RBD) and heat-inactivated SARS-CoV-2 preparations. Trapping was assessed by immunofluorescence, alone or in the presence of cells. The effect of diosmectite on nuclear factor kappa B (NF-kappaB) activation and CXCL10 secretion induced by the spike protein RBD and heat-inactivated SARS-CoV-2 were analyzed by Western blot and ELISA, respectively. Diosmectite bound the spike protein RBD and SARS-CoV-2 preparation, and inhibited interaction of the spike protein RBD with ACE2 receptors on the Caco-2 cell surface. Diosmectite exposure also inhibited NF-kappaB activation and CXCL10 secretion. These data provide direct evidence that diosmectite can bind SARS-CoV-2 components and inhibit downstream inflammation, supporting a mechanistic rationale for consideration of diosmectite as a management option for COVID-19-associated diarrhea.


Subject(s)
COVID-19/drug therapy , Chemokine CXCL10/metabolism , NF-kappa B p50 Subunit/metabolism , SARS-CoV-2 , Silicates/chemistry , Adsorption , Aluminum Compounds/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents , Binding Sites , Caco-2 Cells , Chromatography, Liquid , Clay , Diarrhea/etiology , Diarrhea/therapy , Enterocytes/metabolism , Gastroenterology , Humans , Magnesium Compounds/chemistry , Mass Spectrometry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding/drug effects , Protein Domains , Rotavirus , Silicates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...