Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1606194

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Subject(s)
Aniline Compounds/chemistry , Antiviral Agents/metabolism , Benzamides/chemistry , Coronavirus Papain-Like Proteases/metabolism , Drug Design , Naphthalenes/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Papain-Like Proteases/chemistry , Cytokines/chemistry , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Naphthalenes/metabolism , Naphthalenes/pharmacology , SARS-CoV-2/isolation & purification , Ubiquitins/chemistry
2.
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404888

ABSTRACT

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Subject(s)
COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
3.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290988

ABSTRACT

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Aniline Compounds/pharmacology , Animals , Benzamides/pharmacology , Chlorocebus aethiops , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/isolation & purification , Coronavirus Papain-Like Proteases/metabolism , Drug Synergism , Enzyme Assays , Flavins/pharmacology , Fluorescence Resonance Energy Transfer , Furans/pharmacology , High-Throughput Screening Assays , Inhibitory Concentration 50 , Naphthalenes/pharmacology , Phenanthrenes/pharmacology , Quinones/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Small Molecule Libraries/chemistry , Vero Cells , Virus Replication/drug effects
4.
Bioorg Med Chem Lett ; 30(20): 127472, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-726039

ABSTRACT

New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 µM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.


Subject(s)
Aniline Compounds/pharmacology , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Quinazolines/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/toxicity , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Cell Line , Chlorocebus aethiops , Cricetulus , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinazolines/toxicity , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...