Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
ChemistryOpen ; 10(12): 1244-1250, 2021 12.
Article in English | MEDLINE | ID: covidwho-1598867

ABSTRACT

Rice husk, one of the main side products in the rice production, and its sustainable management represent a challenge in many countries. Herein, we describe the use of this abundant agricultural bio-waste as feedstock for the preparation of silver-containing carbon/silica nano composites with antimicrobial properties. The synthesis was performed using a fast and cheap methodology consisting of wet impregnation followed by pyrolysis, yielding C/SiO2 composite materials doped with varying amounts of silver from 28 to 0.001 wt %. The materials were fully characterized and their antimicrobial activity against ESKAPE pathogens, namely E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli, and the pathogenic yeast C. albicans was investigated. Sensitivities of these strains against the prepared materials were demonstrated, even with exceptional low amounts of 0.015 m% silver. Hence, we report a straightforward method for the synthesis of antimicrobial agents from abundant sources which addresses urgent questions like bio-waste valorization and affordable alternatives to increasingly fewer effective antibiotics.


Subject(s)
Anti-Infective Agents , Oryza , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Carbon , Escherichia coli , Silicon Dioxide , Silver/pharmacology , Staphylococcus aureus
2.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580689

ABSTRACT

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
3.
Nanoscale ; 14(2): 239-249, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1585750

ABSTRACT

Infectious diseases caused by viral or bacterial pathogens are one of the most serious threats to humanity. Moreover, they may lead to pandemics, as we have witnessed severely with the coronavirus disease 2019 (COVID-19). Nanotechnology, including technological developments of nano-sized materials, has brought great opportunities to control the spreading of such diseases. In the family of nano-sized materials, two-dimensional (2D) materials with intrinsic physicochemical properties can efficiently favor antimicrobial activity and maintain a safer environment to protect people against pathogens. For this purpose, they can be used alone or combined for the disinfection process of microbes, antiviral or antibacterial surface coatings, air filtering of medical equipment like face masks, or antimicrobial drug delivery systems. At the same time, they are promising candidates to deal with the issues of conventional antimicrobial approaches such as low efficacy and high cost. This review covers the antiviral or antibacterial activities of 2D materials and highlights their current and possible future applications. Considering their intrinsic properties, 2D materials will become part of the leading antimicrobial technologies for combating future pandemics anytime soon.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Humans , Pandemics , SARS-CoV-2
4.
Food Funct ; 12(20): 9607-9619, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1500759

ABSTRACT

At the end of 2019, the COVID-19 virus spread worldwide, infecting millions of people. Infectious diseases induced by pathogenic microorganisms such as the influenza virus, hepatitis virus, and Mycobacterium tuberculosis are also a major threat to public health. The high mortality caused by infectious pathogenic microorganisms is due to their strong virulence, which leads to the excessive counterattack by the host immune system and severe inflammatory damage of the immune system. This paper reviews the efficacy, mechanism and related immune regulation of epigallocatechin-3-gallate (EGCG) as an anti-pathogenic microorganism drug. EGCG mainly shows both direct and indirect anti-infection effects. EGCG directly inhibits early infection by interfering with the adsorption on host cells, inhibiting virus replication and reducing bacterial biofilm formation and toxin release; EGCG indirectly inhibits infection by regulating immune inflammation and antioxidation. At the same time, we reviewed the bioavailability and safety of EGCG in vivo. At present, the bioavailability of EGCG can be improved to some extent using nanostructured drug delivery systems and molecular modification technology in combination with other drugs. This study provides a theoretical basis for the development of EGCG as an adjuvant drug for anti-pathogenic microorganisms.


Subject(s)
Anti-Infective Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Immunologic Factors/pharmacology , Animals , Antioxidants/pharmacology , COVID-19/drug therapy , Coronavirus/drug effects , Hepatitis Viruses/drug effects , Humans , Inflammation/drug therapy , Mycobacterium tuberculosis/drug effects , Orthomyxoviridae/drug effects , Oxidative Stress/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects
5.
J Am Chem Soc ; 143(43): 17891-17909, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1483091

ABSTRACT

The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.


Subject(s)
Anti-Infective Agents/chemistry , Drug Design , Phototherapy/methods , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria/drug effects , Biofilms/drug effects , Biofilms/radiation effects , Coloring Agents/chemistry , Coloring Agents/pharmacology , Equipment and Supplies/microbiology , Equipment and Supplies/virology , Escherichia coli/drug effects , Escherichia coli/physiology , Eye Diseases/drug therapy , Eye Diseases/pathology , Fungi/drug effects , Graphite/chemistry , Light , Nanoparticles/chemistry , Nanoparticles/toxicity , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Quantum Theory , Reactive Oxygen Species/metabolism , Viruses/drug effects
6.
Crit Care Med ; 49(11): 1974-1982, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1475880
7.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2471-2474, 2021 12.
Article in English | MEDLINE | ID: covidwho-1473989

ABSTRACT

The pathophysiological process of the disease, Covid-19, is mediated by innate immunity, with the presence of macrophages responsible for secreting type 1 and 6 interleukins (IL), tumor necrosis factor (TNF) leading to dilation of endothelial cells with a consequent increase in capillary permeability. The treatment of this disease has been much discussed, but the variability in the clinical picture, the difficulties for diagnosis and treatment, especially of those patients who have the most severe clinical condition of the disease. Immunization is an effective tool for controlling the spread and overload of health services, but its effectiveness involves high investments in the acquisition of inputs, development of vaccines, and logistics of storage and distribution. These factors can be obstacles for countries with lower economic, technological, and infrastructure indexes. Reflecting on these difficulties, we raised the possibility of adjuvant therapies with imminent research feasibility, as is the case with the use of carvacrol, a monoterpenic phenol whose has biological properties that serve as a barrier to processes mediated by free radicals, such as irritation and inflammation, due to its antioxidant action. Many authors highlighted the activity of carvacrol as a potent suppressor of COX-2 expression minimizing the acute inflammatory process, decreasing the release of some pro-inflammatory mediators such as IL-1ß, TNF-α, PGE2. Anyway, the benefits of carvacrol are numerous and the therapeutic possibilities too. With this description, the question arises: would carvacrol be a supporting treatment option, effective in minimizing the deleterious effects of Covid-19? There is still a lot to discover and research.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , COVID-19/metabolism , Cymenes/therapeutic use , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , COVID-19/immunology , Cymenes/pharmacology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism
8.
Molecules ; 26(19)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1463769

ABSTRACT

Pristine high-density bulk disks of MgB2 with added hexagonal BN (10 wt.%) were prepared using spark plasma sintering. The BN-added samples are machinable by chipping them into desired geometries. Complex shapes of different sizes can also be obtained by the 3D printing of polylactic acid filaments embedded with MgB2 powder particles (10 wt.%). Our present work aims to assess antimicrobial activity quantified as viable cells (CFU/mL) vs. time of sintered and 3D-printed materials. In vitro antimicrobial tests were performed against the bacterial strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Enterococcus faecium DSM 13590, and Enterococcus faecalis ATCC 29212; and the yeast strain Candida parapsilosis ATCC 22019. The antimicrobial effects were found to depend on the tested samples and microbes, with E. faecium being the most resistant and E. coli the most susceptible.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Boron Compounds/pharmacology , Fungi/drug effects , Magnesium Compounds/pharmacology , Candida parapsilosis/drug effects , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Polyesters/pharmacology , Printing, Three-Dimensional , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
9.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1463767

ABSTRACT

Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure-activity relationship in the studied compounds.


Subject(s)
Anti-Infective Agents/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Chemistry Techniques, Synthetic/methods , Drug Discovery , Drug Resistance, Microbial , Humans , Models, Molecular , Pyrimidines/chemistry , Pyrimidines/pharmacology , SARS-CoV-2/drug effects
10.
Molecules ; 26(19)2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1463764

ABSTRACT

Due to their large possibility of the structure modification, alkylammonium gemini surfactants are a rapidly growing class of compounds. They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. In this study, we present innovative synthesis of the homologous series of gemini surfactants modified at the spacer by the ether group, i.e., 3-oxa-1,5-pentane-bis(N-alkyl-N,N-dimethylammonium bromides). The critical micelle concentrations were determined. The minimal inhibitory concentrations of the synthesized compounds were determined against bacteria Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538; yeast Candida albicans ATCC 10231; and molds Aspergillus niger ATCC 16401 and Penicillium chrysogenum ATCC 60739. We also investigated the relationship between antimicrobial activity and alkyl chain length or the nature of the spacer. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity.


Subject(s)
Anti-Infective Agents/pharmacology , Quaternary Ammonium Compounds/pharmacology , Surface-Active Agents/pharmacology , Anti-Infective Agents/chemistry , Aspergillus niger/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Green Chemistry Technology , Micelles , Microbial Sensitivity Tests , Molecular Structure , Penicillium chrysogenum/drug effects , Quaternary Ammonium Compounds/chemistry , Staphylococcus aureus/drug effects , Surface-Active Agents/chemistry
11.
Curr Drug Discov Technol ; 17(1): 30-44, 2020.
Article in English | MEDLINE | ID: covidwho-1453168

ABSTRACT

The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, ß-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.


Subject(s)
Anti-Infective Agents/pharmacology , Chalcones/pharmacology , Drug Discovery/trends , Infections/drug therapy , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Chalcones/chemistry , Chalcones/therapeutic use , Humans , Structure-Activity Relationship
12.
Ann Clin Microbiol Antimicrob ; 20(1): 69, 2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-1438275

ABSTRACT

BACKGROUND: Coronavirus SARS-CoV-2 causes COVID-19 illness which can progress to severe pneumonia. Empiric antibacterials are often employed though frequency of bacterial coinfection superinfection is debated and concerns raised about selection of bacterial antimicrobial resistance. We evaluated sputum bacterial and fungal growth from 165 intubated COVID-19 pneumonia patients. Objectives were to determine frequency of culture positivity, risk factors for and outcomes of positive cultures, and timing of antimicrobial resistance development. METHODS: Retrospective reviews were conducted of COVID-19 pneumonia patients requiring intubation admitted to a 1058-bed four community hospital system on the east coast United States, March 1 to May 1, 2020. Length of stay (LOS) was expressed as mean (standard deviation); 95% confidence interval (95% CI) was computed for overall mortality rate using the exact binomial method, and overall mortality was compared across each level of a potential risk factor using a Chi-Square Test of Independence. All tests were two-sided, and significance level was set to 0.05. RESULTS: Average patient age was 68.7 years and LOS 19.9 days. Eighty-three patients (50.3% of total) originated from home, 10 from group homes (6.1% of total), and 72 from nursing facilities (43.6% of total). Mortality was 62.4%, highest for nursing home residents (80.6%). Findings from 253 sputum cultures overall did not suggest acute bacterial or fungal infection in 73 (45%) of 165 individuals sampled within 24 h of intubation. Cultures ≥ 1 week following intubation did grow potential pathogens in 72 (64.9%) of 111 cases with 70.8% consistent with late pneumonia and 29.2% suggesting colonization. Twelve (10.8% of total) of these late post-intubation cultures revealed worsened antimicrobial resistance predominantly in Pseudomonas, Enterobacter, or Staphylococcus aureus. CONCLUSIONS: In severe COVID-19 pneumonia, a radiographic ground glass interstitial pattern and lack of purulent sputum prior to/around the time of intubation correlated with no culture growth or recovery of normal oral flora ± yeast. Discontinuation of empiric antibacterials should be considered in these patients aided by other clinical findings, history of prior antimicrobials, laboratory testing, and overall clinical course. Continuing longterm hospitalisation and antibiotics are associated with sputum cultures reflective of hospital-acquired microbes and increasing antimicrobial resistance. TRIAL REGISTRATION: Not applicable as this was a retrospective chart review study without interventional arm.


Subject(s)
Bacteria/drug effects , Bacterial Infections/complications , COVID-19/therapy , Cross Infection/complications , Fungi/drug effects , Mycoses/complications , Pneumonia/therapy , Sputum/microbiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Fungal , Female , Fungi/genetics , Fungi/isolation & purification , Hospitalization , Humans , Intubation , Length of Stay , Male , Middle Aged , Mycoses/microbiology , Pneumonia/complications , Pneumonia/mortality , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/physiology
13.
J Hosp Infect ; 117: 147-156, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1433518

ABSTRACT

BACKGROUND: The impact of the coronavirus disease (COVID-19) pandemic on antimicrobial resistance (AMR) is a major concern. AIM: To compare the number of patients and isolation rate of antimicrobial-resistant bacteria before and after the beginning of the COVID-19 pandemic using the comprehensive national surveillance data. METHODS: We utilized comprehensive surveillance data, collected in the Japan Nosocomial Infections Surveillance programme, which included a total of 16.7 million samples of 5.9 million tested patients from >1300 hospitals. We compared the number of patients and isolation rate of five bacteria between 2019 and 2020, including antimicrobial-susceptible and -resistant bacteria of Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. FINDINGS: The number of patients and isolation rate of S. aureus and meticillin-resistant S. aureus decreased slightly; those of S. pneumoniae and penicillin-resistant S. pneumoniae decreased by 60%; and those of third-generation cephalosporin-resistant K. pneumoniae increased. The isolation rate of the remaining bacteria apparently increased, although the number of patients decreased. This was due to a substantial decrease in the total number of tested patients (the denominator of the isolation rate), which was larger than that of the number of patients (the numerator of the isolation rate). Consistent results were obtained when the same data were re-aggregated using the procedure of the World Health Organization Global Antimicrobial Resistance Surveillance System, demonstrating the general importance of this problem. CONCLUSION: Surveillance data during the COVID-19 pandemic must be carefully interpreted based on examination of the numerator, denominator and background factors that affect the denominator.


Subject(s)
Anti-Infective Agents , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2 , Staphylococcus aureus
14.
Food Funct ; 12(20): 9607-9619, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1434159

ABSTRACT

At the end of 2019, the COVID-19 virus spread worldwide, infecting millions of people. Infectious diseases induced by pathogenic microorganisms such as the influenza virus, hepatitis virus, and Mycobacterium tuberculosis are also a major threat to public health. The high mortality caused by infectious pathogenic microorganisms is due to their strong virulence, which leads to the excessive counterattack by the host immune system and severe inflammatory damage of the immune system. This paper reviews the efficacy, mechanism and related immune regulation of epigallocatechin-3-gallate (EGCG) as an anti-pathogenic microorganism drug. EGCG mainly shows both direct and indirect anti-infection effects. EGCG directly inhibits early infection by interfering with the adsorption on host cells, inhibiting virus replication and reducing bacterial biofilm formation and toxin release; EGCG indirectly inhibits infection by regulating immune inflammation and antioxidation. At the same time, we reviewed the bioavailability and safety of EGCG in vivo. At present, the bioavailability of EGCG can be improved to some extent using nanostructured drug delivery systems and molecular modification technology in combination with other drugs. This study provides a theoretical basis for the development of EGCG as an adjuvant drug for anti-pathogenic microorganisms.


Subject(s)
Anti-Infective Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Immunologic Factors/pharmacology , Animals , Antioxidants/pharmacology , COVID-19/drug therapy , Coronavirus/drug effects , Hepatitis Viruses/drug effects , Humans , Inflammation/drug therapy , Mycobacterium tuberculosis/drug effects , Orthomyxoviridae/drug effects , Oxidative Stress/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects
15.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1390656

ABSTRACT

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Personal Protective Equipment , Anti-Infective Agents/chemistry , Bacteriophage phi 6/drug effects , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/pharmacology , COVID-19/pathology , COVID-19/virology , Disk Diffusion Antimicrobial Tests , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Polyethylene Terephthalates/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Staphylococcus epidermidis/drug effects
16.
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1389464

ABSTRACT

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Subject(s)
Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , COVID-19/drug therapy , Computer Simulation , Cosmeceuticals/chemistry , Cosmeceuticals/therapeutic use , Dietary Supplements , Gene Transfer Techniques , Humans , Lactoferrin/chemistry , Lipid Bilayers , Nanostructures/administration & dosage , Nanostructures/chemistry , Peptides/administration & dosage , Stem Cells , Vaccines, Subunit/chemistry , Vaccines, Subunit/pharmacology
17.
Biochem Biophys Res Commun ; 575: 36-41, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1370449

ABSTRACT

Air spaces and material surfaces in a pathogen-contaminated environment can often be a source of infection to humans, and disinfection has become a common intervention focused on reducing the contamination levels. In this study, we examined the efficacy of SAIW, a unique electrolyzed water with chlorine-free, high pH, high concentration of dissolved hydrogen, and low oxygen reduction potential, for the inactivation of several viruses and bacteria. Infectivity assays revealed that initial viral titers of enveloped and non-enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, herpes simplex virus type 1, human coronavirus, feline calicivirus, and canine parvovirus, were reduced by 2.9- to 5.5-log10 within 30 s of SAIW exposure. Similarly, the culturability of three Gram-negative bacteria (Escherichia coli, Salmonella, and Legionella) dropped down by 1.9- to 4.9-log10 within 30 s of SAIW treatment. Mechanistically, treatment with SAIW was found to significantly decrease the binding and subsequent entry efficiencies of SARS-CoV-2 on Vero cells. Finally, we showed that this chlorine-free electrolytic ion water had no acute inhalation toxicity in mice, demonstrating that SAIW holds promise for a safer antiviral and antibacterial disinfectant.


Subject(s)
Anti-Infective Agents/pharmacology , Disinfectants/pharmacology , Disinfection/methods , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , Water/pharmacology , Animals , Calicivirus, Feline/drug effects , Calicivirus, Feline/growth & development , Chlorocebus aethiops , Colony Count, Microbial , Electrolysis , Escherichia coli/drug effects , Escherichia coli/growth & development , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/growth & development , Humans , Hydrogen-Ion Concentration , Influenza A virus/drug effects , Influenza A virus/growth & development , Legionella/drug effects , Legionella/growth & development , Mice , Parvovirus, Canine/drug effects , Parvovirus, Canine/growth & development , SARS-CoV-2/growth & development , Salmonella/drug effects , Salmonella/growth & development , Skin/drug effects , Vero Cells , Viral Load
18.
Curr Opin Infect Dis ; 34(4): 365-371, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1341151

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease (COVID-19) pandemic has resulted in necessary modifications of infection control policies and practices in acute healthcare facilities globally. This is often accompanied by infrastructure modifications, ward redesignations, as well as healthcare staff redeployments and changes to infection prevention and control (IPC) practices. We review the potential for both negative and positive impacts these major changes can have on nosocomial transmission of multidrug-resistant organisms (MDROs). RECENT FINDINGS: Healthcare facilities around the world have reported outbreaks of MDROs during the COVID-19 pandemic. In contrast some centres have reported a decrease in baseline rates due to a number of possible factors. SUMMARY: While implementing crucial preventive measures for COVID-19, is it important to consider any collateral effects of changes in IPC and antimicrobial stewardship program (ASP) practices. The disruption caused to IPC and ASP practices during the pandemic are likely to see a counter intuitive increase in transmission of MDROs.


Subject(s)
COVID-19/epidemiology , Cross Infection/epidemiology , Cross Infection/etiology , Cross Infection/transmission , Drug Resistance, Microbial , Drug Resistance, Multiple , SARS-CoV-2 , Acute Disease , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Cross Infection/drug therapy , Disease Outbreaks , Hospitals , Humans , Infection Control/methods , Pandemics , Public Health Surveillance
19.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1323315

ABSTRACT

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Subject(s)
Azoles/chemistry , Azoles/chemical synthesis , Azoles/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Biomimetics/methods , Cyclooxygenase Inhibitors/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Humans , Isoindoles , Molecular Structure , Neuroprotective Agents/pharmacology , Selenium/chemistry , Selenoproteins/chemical synthesis , Selenoproteins/pharmacology
20.
Molecules ; 26(11)2021 May 31.
Article in English | MEDLINE | ID: covidwho-1323314

ABSTRACT

Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.


Subject(s)
Anti-Infective Agents/pharmacology , Communicable Diseases/drug therapy , Dendrimers/chemistry , Peptides/chemistry , Polymers/chemistry , Animals , Anti-HIV Agents/pharmacology , Bacterial Infections/drug therapy , Biotechnology , COVID-19/drug therapy , Catalysis , Contrast Media , Drug Delivery Systems , Drug Design , HIV Infections/drug therapy , Humans , Infectious Disease Medicine/trends , Magnetic Resonance Imaging , Mice , Nanotechnology , Polypropylenes/chemistry , SARS-CoV-2 , Stereoisomerism , Tomography, X-Ray Computed/trends , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...