Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
1.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
2.
Comb Chem High Throughput Screen ; 25(14): 2315-2316, 2022.
Article in English | MEDLINE | ID: covidwho-2141208
3.
Pharmacol Res ; 185: 106511, 2022 11.
Article in English | MEDLINE | ID: covidwho-2132084

ABSTRACT

Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , COVID-19/drug therapy , Glucocorticoids/therapeutic use , Glucocorticoids/pharmacology , Anti-Inflammatory Agents/adverse effects , Autoimmune Diseases/drug therapy
4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2099581

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ceramides , COVID-19/drug therapy , Disease Models, Animal , Fluoxetine/pharmacology , Fluoxetine/therapeutic use
5.
Rev Esp Quimioter ; 35 Suppl 3: 6-9, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2091721

ABSTRACT

In response to SARS-CoV-2 infection, the immune system physiologically upregulates to try to clear the virus from the body; failure to compensate for this inflammatory response with an anti-inflammatory response leads to dysregulation of the immune system that ultimately leads to a situation of uncontrolled hyperinflammation called cytokine storm. This cytokine storm can cause ARDS or multi-organ failure leading to patient death. This review exposes the different mechanisms of the inflammatory response in COVID-19 infection and the therapeutic options to treat this process.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , SARS-CoV-2 , Cytokines , Anti-Inflammatory Agents/therapeutic use
6.
Ter Arkh ; 94(8): 1028-1035, 2022 Oct 12.
Article in Russian | MEDLINE | ID: covidwho-2091506

ABSTRACT

The Advisory Board chaired by the chief specialist in infectious diseases of the Ministry of Health of Russian Federation, Professor V.P. Chulanov was held on June 18, 2022 in Saint Petersburg. Aim. The main purpose of the Board was following discussion: the analysis of the real-world data of levilimab as an anticipatory therapy for COVID-19 in hospitalized patients; the review of the experience and perspectives of levilimab as an anticipatory anti-inflammatory option for outpatient patients who meet defined clinical and laboratory criteria. Results. The analyzed data on clinical efficacy and safety formed the basis of recommendations proposed by experts for the use of levilimab in the inpatient and outpatient medical care for COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Anti-Inflammatory Agents , Receptors, Interleukin-6
7.
Ter Arkh ; 94(5): 668-674, 2022 Jun 17.
Article in Russian | MEDLINE | ID: covidwho-2091500

ABSTRACT

AIM: To study the effect of levilimab or baricitinib in combination with standard therapy (ST) on the incidence of severe viral pneumonia associated with a new coronavirus infection COVID-19. MATERIALS AND METHODS: A multicenter, open-label observational study of the efficacy and safety of levilimab in combination with ST (group 1, n=100), baricitinib in combination with ST (group 2, n=139), or in comparison with ST (group 3, n=200) in outpatients with verified CT-1 pneumonia. RESULTS: According to the results of laboratory tests, patients treated with levilimab in combination with ST had the best dynamics of changes in CRP from reliably the highest level (mg/L) to the lowest in comparison with other groups. In the group of patients with ST, in contrast to the other groups, no dynamics of CRP was observed by day 5 of therapy. In group of hospitalized patients initially receiving levilimab in addition to ST, the rate of transfer to the intensive care unit (2 patients, 9.52%) and length of stay (4 days) was significantly lower compared to the values in patients in both the baricitinib group in combination with ST (7 patients, 15.56%; 5 days [interquartile range 36.5]) and in patients receiving ST alone (7 patients, 15.56%; 5 days [interquartile range 36.5]). Also in hospitalized patients we observed no statistically significant intergroup differences in the incidence of infectious complications and thromboembolic events, which confirms the safety of including levilimab or baricitinib in COVID-19 pathogenetic therapy regimens. Observational results support the hypothesis that the initial inclusion of levilimab or baricitinib in addition to ST is accompanied by a reduced risk of viral pneumonia progression. CONCLUSION: The addition of levilimab or baricitinib to the therapy regimen for coronavirus infection during the outpatient phase has demonstrated a preemptive anti-inflammatory effect and reduced the probability of lung tissue damage progression.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/drug therapy , Outpatients , SARS-CoV-2 , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/therapeutic use , Treatment Outcome
8.
J Physiol Pharmacol ; 73(3)2022 Jun.
Article in English | MEDLINE | ID: covidwho-2091455

ABSTRACT

Systemic inflammation is a hallmark of severe coronavirus disease-19 (COVID-19). Anti-inflammatory therapy is considered crucial to modulate the hyperinflammatory response (cytokine storm) in hospitalized COVID-19 patients. There is currently no specific, conclusively proven, cost-efficient, and worldwide available anti-inflammatory therapy available to treat COVID-19 patients with cytokine storm. The present study aimed to investigate the treatment benefit of oral colchicine for hospitalized COVID-19 patients with suspected cytokine storm. Colchicine is an approved drug and possesses multiple anti-inflammatory mechanisms. This was a pilot, open-label randomized controlled clinical trial comparing standard of care (SOC) plus oral colchicine (colchicine arm) vs. SOC alone (control arm) in non-ICU hospitalized COVID-19 patients with suspected cytokine storm. Colchicine treatment was initiated within first 48 hours of admission delivered at 1.5 mg loading dose, followed by 0.5 mg b.i.d. for next 6 days and 0.5 mg q.d. for the second week. A total of 96 patients were randomly allocated to the colchicine (n=48) and control groups (n=48). Both colchicine and control group patients experienced similar clinical outcomes by day 14 of hospitalization. Treatment outcome by day 14 in colchicine vs control arm: recovered and discharged alive: 36 (75.0%) vs. 37 (77.1%), remain admitted after 14-days: 4 (8.3%) vs. 5 (10.4%), ICU transferred: 4 (8.3%) vs. 3 (6.3%), and mortality: 4 (8.3%) vs. 3 (6.3%). The speed of improvement of COVID-19 acute symptoms including shortness of breath, fever, cough, the need of supplementary oxygen, and oxygen saturation level, was almost identical in the two groups. Length of hospitalization was on average 1.5 day shorter in the colchicine group. There was no evidence for a difference between the two groups in the follow-up serum levels of inflammatory biomarkers including C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH), ferritin, interleukin-6 (IL-6), high-sensitivity troponin T (hs-TnT) and N-terminal pro b-type natriuretic peptide (NT pro-BNP). According to the results of our study, oral colchicine does not appear to show clinical benefits in non-ICU hospitalized COVID-19 patients with suspected cytokine storm. It is possible that the anti-inflammatory pathways of colchicine are not crucially involved in the pathogenesis of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/drug therapy , SARS-CoV-2 , Cytokine Release Syndrome/drug therapy , Colchicine/therapeutic use , Hospitalization , Anti-Inflammatory Agents/therapeutic use , Treatment Outcome
9.
Immun Inflamm Dis ; 10(11): e712, 2022 11.
Article in English | MEDLINE | ID: covidwho-2085043

ABSTRACT

INTRODUCTION: A major contributor to coronavirus disease 2019 (COVID-19) progression and severity is a dysregulated innate and adaptive immune response. Interleukin-38 (IL-38) is an IL-1 family member with broad anti-inflammatory properties, but thus far little is known about its role in viral infections. Recent studies have shown inconsistent results, as one study finding an increase in circulating IL-38 in COVID-19 patients in comparison to healthy controls, whereas two other studies report no differences in IL-38 concentrations. METHODS: Here, we present an exploratory, retrospective cohort study of circulating IL-38 concentrations in hospitalized COVID-19 patients admitted to two Dutch hospitals (discovery n = 148 and validation n = 184) and age- and sex-matched healthy subjects. Plasma IL-38 concentrations were measured by enzyme-linked immunosorbent assay, disease-related proteins by proximity extension assay, and clinical data were retrieved from hospital records. RESULTS: IL-38 concentrations were stable during hospitalization and similar to those of healthy control subjects. IL-38 was not associated with rates of intensive care unit admission or mortality. Only in men in the discovery cohort, IL-38 concentrations were positively correlated with hospitalization duration. A positive correlation between IL-38 and the inflammatory biomarker d-dimer was observed in men of the validation cohort. In women of the validation cohort, IL-38 concentrations correlated negatively with thrombocyte numbers. Furthermore, plasma IL-38 concentrations in the validation cohort correlated positively with TNF, TNFRSF9, IL-10Ra, neurotrophil 3, polymeric immunoglobulin receptor, CHL1, CD244, superoxide dismutase 2, and fatty acid binding protein 2, and negatively with SERPINA12 and cartilage oligomeric matrix protein. CONCLUSIONS: These data indicate that IL-38 is not associated with disease outcomes in hospitalized COVID-19 patients. However, moderate correlations between IL-38 concentrations and biomarkers of disease were identified in one of two cohorts. While we demonstrate that IL-38 concentrations are not indicative of COVID-19 severity, its anti-inflammatory effects may reduce COVID-19 severity and should be experimentally investigated.


Subject(s)
COVID-19 , Serpins , Male , Humans , Female , SARS-CoV-2 , Retrospective Studies , Biomarkers , Anti-Inflammatory Agents , Interleukins
10.
JAMA Netw Open ; 5(10): e2236123, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2084938

ABSTRACT

Importance: Patients with chronic kidney disease and type 2 diabetes have a higher risk of developing pneumonia as well as an increased risk of severe COVID-19-associated adverse events and mortality. Therefore, the anti-inflammatory effects of mineralocorticoid receptor antagonists via blockade of the mineralocorticoid receptor may alter the risk of pneumonia and COVID-19-associated adverse events in patients with chronic kidney disease and type 2 diabetes. Objective: To evaluate whether the selective, nonsteroidal mineralocorticoid receptor antagonist finerenone is associated with protection against pneumonia and COVID-19 adverse events in patients with type 2 diabetes and chronic kidney disease. Design, Setting, and Participants: This secondary analysis used patient-level data from FIDELITY, a prespecified pooled analysis of 2 multicenter, double-blind, placebo-controlled, event-driven, phase 3 randomized clinical trials: FIDELIO-DKD and FIGARO-DKD, conducted between September 2015 and February 2021. Patients in FIDELIO-DKD or FIGARO-DKD with type 2 diabetes and chronic kidney disease (urine albumin to creatine ratio, 30-5000 mg/g, estimated glomerular filtration rate ≥25 mL/min/1.73 m2) were assessed. Data were analyzed from May 15, 2021, to July 28, 2022. Exposure: Patients were randomized to finerenone (10 or 20 mg once daily) or matching placebo. Main Outcomes and Measures: The main outcomes were investigator-reported incidences of treatment-emergent infective pneumonia adverse events and serious adverse events (during and up to 3 days after treatment) and any COVID-19 adverse events. Results: Of 13 026 randomized patients (mean [SD] age, 64.8 [9.5] years; 9088 [69.8%] men), 12 999 were included in the FIDELITY safety population (6510 patients receiving finerenone; 6489 patients receiving placebo). Over a median (range) treatment duration of 2.6 (0-5.1) years, finerenone was consistently associated with reduced risk of pneumonia and serious pneumonia vs placebo. Overall, 307 patients (4.7%) treated with finerenone and 434 patients (6.7%) treated with placebo experienced pneumonia (hazard ratio [HR], 0.71; 95% CI, 0.64-0.79; P < .001). Serious pneumonia occurred in 171 patients (2.6%) treated with finerenone and 250 patients (3.9%) treated with placebo (HR, 0.69; 95% CI, 0.60-0.79; P < .001). Incidence proportions of COVID-19 adverse events were 86 patients (1.3%) in the finerenone group and 118 patients (1.8%) in the placebo group (HR, 0.73; 95% CI, 0.60-0.89; P = .002). Conclusions and Relevance: These findings suggest that mineralocorticoid receptor blockade with finerenone was associated with protection against pneumonia and COVID-19 adverse events in patients with type 2 diabetes and chronic kidney disease. Further clinical studies may be warranted. Trial Registration: ClinicalTrials.gov identifiers: FIDELIO-DKD: NCT02540993; FIGARO-DKD: NCT02545049.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Female , Humans , Male , Middle Aged , Albumins/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Creatine/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/complications , Mineralocorticoid Receptor Antagonists/therapeutic use , Receptors, Mineralocorticoid/therapeutic use , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced
11.
Cannabis Cannabinoid Res ; 7(5): 582-590, 2022 10.
Article in English | MEDLINE | ID: covidwho-2077548

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory distress syndrome coronavirus 2 (SARS-Cov-2), was identified for the first time in late 2019 in China, resulting in a global pandemic of massive impact. Despite a fast development and implementation of vaccination strategies, and the scouting of several pharmacological treatments, alternative effective treatments are still needed. In this regard, cannabinoids represent a promising approach because they have been proven to exhibit several immunomodulatory, anti-inflammatory, and antiviral properties in COVID-19 disease models and related pathological conditions. This mini-review aims at providing a practical brief overview of the potential applications of cannabinoids so far identified for the treatment and prevention of COVID-19, finally considering key aspects related to their technological and clinical implementation.


Subject(s)
COVID-19 , Cannabinoids , Humans , COVID-19/drug therapy , SARS-CoV-2 , Cannabinoids/pharmacology , Antiviral Agents/pharmacology , Anti-Inflammatory Agents
12.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071515

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a mortal threat to human health. The elucidation of the relationship between peripheral immune cells and the development of inflammation is essential for revealing the pathogenic mechanism of COVID-19 and developing related antiviral drugs. The immune cell metabolism-targeting therapies exhibit a desirable anti-inflammatory effect in some treatment cases. In this study, based on differentially expressed gene (DEG) analysis, a genome-scale metabolic model (GSMM) was reconstructed by integrating transcriptome data to characterize the adaptive metabolic changes in peripheral blood mononuclear cells (PBMCs) in severe COVID-19 patients. Differential flux analysis revealed that metabolic changes such as enhanced aerobic glycolysis, impaired oxidative phosphorylation, fluctuating biogenesis of lipids, vitamins (folate and retinol), and nucleotides played important roles in the inflammation adaptation of PBMCs. Moreover, the main metabolic enzymes such as the solute carrier (SLC) family 2 member 3 (SLC2A3) and fatty acid synthase (FASN), responsible for the reactions with large differential fluxes, were identified as potential therapeutic targets. Our results revealed the inflammation regulation potentials of partial metabolic reactions with differential fluxes and their metabolites. This study provides a reference for developing potential PBMC metabolism-targeting therapy strategies against COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Leukocytes, Mononuclear/metabolism , Vitamin A/metabolism , Antiviral Agents/metabolism , Inflammation/metabolism , Nucleotides/metabolism , Vitamins/metabolism , Fatty Acid Synthases/metabolism , Folic Acid/metabolism , Anti-Inflammatory Agents/metabolism , Lipids
13.
Biomolecules ; 12(10)2022 10 13.
Article in English | MEDLINE | ID: covidwho-2071206

ABSTRACT

Microbial products have been used for the treatment of different diseases for many centuries. The serratiopeptidase enzyme provides a new hope for COVID-19-infected patients. Nowadays, anti-inflammatory drugs are easy to obtain at minimal expenditure from microbial sources. Serratia sp. is identified as one of the most efficient bacteria produced from serratiopeptidase. Screening for new and efficient bacterial strains from different sources has been of interest in recent years. Serratiopeptidase remains the most well-known anti-inflammatory drug of choice. Serratiopeptidase is a cheaper and safer anti-inflammatory drug alternative to NSAIDs. The multifaceted properties of serratiopeptidase may lead towards arthritis, diabetes, cancer and thrombolytic treatments. Existing serratiopeptidase treatments in combination with antibiotics are popular in the treatment of postoperative swelling. Although an exclusive number of serratiopeptidase-producing strains have been derived, there is an urge for new recombinant strains to enhance the production of the enzyme. This review explores the properties of serratiopeptidase, different therapeutic aspects, industrial production, and various analytical techniques used in enzyme recovery. In addition, the review highlights the therapeutic and clinical aspects of the serratiopeptidase enzyme to combat COVID-19-induced respiratory syndrome.


Subject(s)
COVID-19 , Humans , COVID-19/drug therapy , Peptide Hydrolases , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents
14.
J Ethnopharmacol ; 299: 115674, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2069311

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zukamu granules (ZKMG), as the preferred drug for the treatment of colds in Uygur medical theory, has been used for 1500 years. It is also widely used in China and included in the National Essential Drugs List (2018 edition). It has unique anti-inflammatory, antitussive and analgesic effects. AIM OF THE STUDY: Aiming at the research of traditional Chinese medicine (TCM) with the characteristics of overall regulation of body diseases and the immune regulation mechanism with the concept of integrity, this paper put forward the integrated application of network composite module analysis and animal experiment verification to study the immune regulation mechanism of TCM. MATERIALS AND METHODS: The active components and targets of ZKMG were predicted, and network module analysis was performed to explore their potential immunomodulatory mechanisms. Then acute lung injury (ALI) mice and idiopathic pulmonary fibrosis (IPF) rats were used as pathological models to observe the effects of ZKMG on the pathological conditions of infected ALI and IPF rats, determine the contents of Th1, Th2 characteristic cytokines and immunoglobulins, and study the intervention of GATA3/STAT6 signal pathway. RESULTS: The results of network composite module analysis showed that ZKMG contained 173 pharmacodynamic components and 249 potential targets, and four key modules were obtained. The immunomodulatory effects of ZKMG were related to T cell receptor signaling pathway. The validation results of bioeffects that ZKMG could carry out bidirectional immune regulation on Th1/Th2 cytokines in the stage of ALI and IPF, so as to play the role of regulating immune homeostasis and organ protection. CONCLUSIONS: The network composite module analysis and verification method is an exploration to study the immune regulation mechanism of TCM by combining the network module prediction analysis with animal experiments, which provides a reference for subsequent research.


Subject(s)
Acute Lung Injury , Antitussive Agents , Drugs, Chinese Herbal , Immunomodulating Agents , Acute Lung Injury/drug therapy , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antitussive Agents/therapeutic use , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Essential/therapeutic use , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Mice , Network Pharmacology/methods , Rats , Receptors, Antigen, T-Cell/therapeutic use
15.
Viruses ; 14(10)2022 09 27.
Article in English | MEDLINE | ID: covidwho-2066543

ABSTRACT

Curcumin, the bioactive compound of the spice Curcuma longa, has already been reported as a potential COVID-19 adjuvant treatment due to its immunomodulatory and anti-inflammatory properties. In this study, SARS-CoV-2 was challenged with curcumin; moreover, curcumin was also coupled with laser light at 445 nm in a photodynamic therapy approach. Curcumin at a concentration of 10 µM, delivered to the virus prior to inoculation on cell culture, inhibited SARS-CoV-2 replication (reduction >99%) in Vero E6 cells, possibly due to disruption of the virion structure, as observed using the RNase protection assay. However, curcumin was not effective as a prophylactic treatment on already-infected Vero E6 cells. Notably, when curcumin was employed as a photosensitizer and blue laser light at 445 nm was delivered to a mix of curcumin/virus prior to the inoculation on the cells, virus inactivation was observed (>99%) using doses of curcumin that were not antiviral by themselves. Photodynamic therapy employing crude curcumin can be suggested as an antiviral option against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Curcumin , Chlorocebus aethiops , Animals , Humans , SARS-CoV-2 , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Curcumin/pharmacology , COVID-19/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Vero Cells , Anti-Inflammatory Agents/pharmacology , Ribonucleases/pharmacology , Virus Replication
16.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2066270

ABSTRACT

Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.


Subject(s)
Andrographis , Antimalarials , Diterpenes , Plants, Medicinal , Andrographis/chemistry , Andrographis paniculata , Anti-Bacterial Agents , Anti-Inflammatory Agents/pharmacology , Antifungal Agents , Antioxidants , Diterpenes/chemistry , Hypoglycemic Agents , Lactones , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Water
17.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2066116

ABSTRACT

Naturally occurring bioactives, also known as phytochemicals, have been widely recognized and researched owing to their multiple potentialities [...].


Subject(s)
Anti-Inflammatory Agents , Phytochemicals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
18.
Life Sci ; 309: 121048, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061633

ABSTRACT

Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-ß1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1ß), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.


Subject(s)
COVID-19 , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-1beta , SARS-CoV-2 , COVID-19/drug therapy , Fibrosis , Pyridones/pharmacology , Pyridones/therapeutic use , Collagen Type I/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Platelet-Derived Growth Factor , Inflammation/drug therapy , Transforming Growth Factors , Angiotensins
19.
Am J Case Rep ; 23: e937094, 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2056387

ABSTRACT

BACKGROUND Cognitive symptoms persisting longer than 3 months after infection, such as memory loss, or difficulties concentrating, have been reported in up to one-third of patients after COVID-19. Evidence-based therapeutic interventions to treat post-COVID-19 symptoms (also called "Long-COVID symptoms") have not yet been established, and the treating physicians must rely on conjecture to help patients. Based on its mechanism of action and its efficacy in treating cognitive impairment, as well as its good tolerability, the Ginkgo biloba special extract EGb 761 has been suggested as a remedy to alleviate cognitive post-COVID-19 symptoms. In many studies, EGb 761 has been demonstrated to protect endothelial cells, to have potent anti-inflammatory effects, and to enhance neuroplasticity. CASE REPORT Here, we report for the first time the application of EGb 761 in the therapy of post-COVID-19-related cognitive deficits. Three women and 2 men, aged 26 to 59 years (average age 34.6 years), presented with concentration and attention deficits, cognitive deficiencies, and/or fatigue 9-35 weeks after infection. A daily dose of 2×80 mg of EGb 761 did not cause any detectable adverse effects, and it substantially improved or completely restored cognitive deficits and, when initially present, also other symptoms, such as fatigue and hyposmia, within an observation period of up to 6 months. CONCLUSIONS Our observations support the hypothesis that EGb 761 might be a low-risk treatment option for post-COVID-19 patients with cognitive symptoms. Moreover, we derive recommendations for randomized controlled clinical trials to confirm efficacy in that indication.


Subject(s)
COVID-19 , Cognitive Dysfunction , Adult , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Endothelial Cells , Fatigue , Female , Ginkgo biloba , Humans , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
20.
Indian J Ophthalmol ; 70(10): 3713-3715, 2022 10.
Article in English | MEDLINE | ID: covidwho-2055726

ABSTRACT

A 13-year-old boy developed painless diminution of vision in left eye 15 days after taking first dose of coronavirus disease 2019 (COVID-19) vaccine (Corbevax). Fundus and fluorescein angiography revealed central retinal vein occlusion in the left eye. Blood investigations were noncontributory. He was administered three doses of pulse corticosteroids followed by a tapering dose of oral corticosteroids. Retinal vascular occlusion can occur following COVID-19 vaccination in children, and early and aggressive systemic anti-inflammatory therapy can be helpful.


Subject(s)
COVID-19 Vaccines , COVID-19 , Retinal Vein Occlusion , Adolescent , Anti-Inflammatory Agents/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Fluorescein Angiography , Humans , Male , Retinal Vein Occlusion/chemically induced , Retinal Vein Occlusion/diagnosis , Retinal Vein Occlusion/drug therapy , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL