Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Eur J Med Chem ; 229: 114002, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1517139


Compounds targeting the inflammasome-caspase-1 pathway could be of use for the treatment of inflammation and inflammatory diseases. Previous caspase-1 inhibitors were in great majority covalent inhibitors and failed in clinical trials. Using a mixed modelling, computational screening, synthesis and in vitro testing approach, we identified a novel class of non-covalent caspase-1 non cytotoxic inhibitors which are able to inhibit IL-1ß release in activated macrophages in the low µM range, in line with the best activities observed for the known covalent inhibitors. Our compounds could form the basis of further optimization towards potent drugs for the treatment of inflammation and inflammatory disorders including also dysregulated inflammation in Covid 19.

Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Autoimmune Diseases/drug therapy , Caspase 1/drug effects , Inflammasomes/drug effects , Inflammation/drug therapy , Serpins/chemical synthesis , Serpins/pharmacology , Tetrazoles/chemical synthesis , Tetrazoles/therapeutic use , Viral Proteins/chemical synthesis , Viral Proteins/pharmacology , COVID-19 , Cell Division/drug effects , Drug Design , Drug Evaluation, Preclinical , Humans , Interleukin-1beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Tetrazoles/pharmacology , U937 Cells
Bioorg Chem ; 116: 105346, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401246


Starting from the antimalarial drugs chloroquine and hydroxychloroquine, we conducted a structural optimization on the side chain of chloroquine by introducing amino substituted longer chains thus leading to a series of novel aminochloroquine derivatives. Anti-infectious effects against SARS-Cov2 spike glycoprotein as well as immunosuppressive and anti-inflammatory activities of the new compounds were evaluated. Distinguished immunosuppressive activities on the responses of T cell, B cell and macrophages upon mitogen and pathogenic signaling were manifested. Compounds 9-11 displayed the most promising inhibitory effects both on cellular proliferation and on the production of multiple pro-inflammatory cytokines, including IL-17, IFN-γ, IL-6, IL-1ß and TNF-α, which might be insightful in the pursuit of treatment for immune disorders and inflammatory diseases.

Amines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , Chloroquine/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amines/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , B-Lymphocytes/immunology , Cell Proliferation/drug effects , Chloroquine/chemical synthesis , Chloroquine/chemistry , Cytokines/metabolism , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Macrophages/immunology , Microbial Sensitivity Tests , Molecular Structure , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
Bioorg Chem ; 116: 105272, 2021 11.
Article in English | MEDLINE | ID: covidwho-1370451


Hypertension has been recognized as one of the most frequent comorbidities and risk factors for the seriousness and adverse consequences in COVID-19 patients. 3,4-dihydropyrimidin-2(1H) ones have attracted researchers to be synthesized via Beginilli reaction and evaluate their antihypertensive activities as bioisosteres of nifedipine a well-known calcium channel blocker. In this study, we report synthesis of some bioisosteres of pyrimidines as novel CCBs with potential ACE2 inhibitory effect as antihypertensive agents with protective effect against COVID-19 infection by suppression of ACE2 binding to SARS-CoV-2 Spike RBD. All compounds were evaluated for their antihypertensive and calcium channel blocking activities using nifedipine as a reference standard. Furthermore, they were screened for their ACE2 inhibition potential in addition to their anti-inflammatory effects on LPS-stimulated THP-1 cells. Most of the tested compounds exhibited significant antihypertensive activity, where compounds 7a, 8a and 9a exhibited the highest activity compared to nifedipine. Moreover, compounds 4a,b, 5a,b, 7a,b, 8a,c and 9a showed promising ACE2:SARS-CoV-2 Spike RBD inhibitory effect. Finally, compounds 5a, 7b and 9a exerted a promising anti-inflammatory effect by inhibition of CRP and IL-6 production. Ultimately, compound 9a may be a promising antihypertensive candidate with anti-inflammatory and potential efficacy against COVID-19 via ACE2 receptor inhibition.

Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Calcium Channel Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Humans , SARS-CoV-2/drug effects