ABSTRACT
BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).
Subject(s)
Antibodies, Monoclonal, Humanized , Antiparkinson Agents , Parkinson Disease , alpha-Synuclein , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antiparkinson Agents/adverse effects , Double-Blind Method , Humans , Parkinson Disease/drug therapy , Treatment Outcome , alpha-Synuclein/immunologyABSTRACT
COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.
Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus , Viral Envelope ProteinsSubject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , Cricetinae , Humans , Mice , Mutation , Prevalence , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologySubject(s)
Respiratory Syncytial Virus Infections/mortality , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines , Child, Preschool , Clinical Trials, Phase III as Topic , Drug Approval , Female , Humans , Immunity, Maternally-Acquired/immunology , Infant , Infant, Newborn , Inflammation/immunology , Pregnancy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Viruses/chemistry , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Viral Fusion Proteins/metabolism , Virus Internalization , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunologyABSTRACT
The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.
Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/immunology , Broadly Neutralizing Antibodies/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigenic Drift and Shift/genetics , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Epitopes, B-Lymphocyte/immunology , Humans , Immune Evasion , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vesiculovirus/geneticsABSTRACT
The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.
Subject(s)
Antiviral Agents/immunology , COVID-19 Drug Treatment , Immunomodulating Agents/pharmacology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antiviral Agents/pharmacology , Azetidines/immunology , Azetidines/pharmacology , COVID-19/etiology , Dexamethasone/immunology , Dexamethasone/pharmacology , Famotidine/immunology , Famotidine/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Infliximab/immunology , Infliximab/pharmacology , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Melatonin/immunology , Melatonin/pharmacology , Purines/immunology , Purines/pharmacology , Pyrazoles/immunology , Pyrazoles/pharmacology , Sulfonamides/immunology , Sulfonamides/pharmacologyABSTRACT
To determine whether mitigating the harmful effects of circulating microvesicle-associated inducible nitric oxide (MV-A iNOS) in vivo increases the survival of challenged mice in three different mouse models of sepsis, the ability of anti-MV-A iNOS monoclonal antibodies (mAbs) to rescue challenged mice was assessed using three different mouse models of sepsis. The vivarium of a research laboratory Balb/c mice were challenged with an LD80 dose of either lipopolysaccharide (LPS/endotoxin), TNFα, or MV-A iNOS and then treated at various times after the challenge with saline as control or with an anti-MV-A iNOS mAb as a potential immunotherapeutic to treat sepsis. Each group of mice was checked daily for survivors, and Kaplan-Meier survival curves were constructed. Five different murine anti-MV-A iNOS mAbs from our panel of 24 murine anti-MV-A iNOS mAbs were found to rescue some of the challenged mice. All five murine mAbs were used to genetically engineer humanized anti-MV-A iNOS mAbs by inserting the murine complementarity-determining regions (CDRs) into a human IgG1,kappa scaffold and expressing the humanized mAbs in CHO cells. Three humanized anti-MV-A iNOS mAbs were effective at rescuing mice from sepsis in three different animal models of sepsis. The effectiveness of the treatment was both time- and dose-dependent. Humanized anti-MV-A iNOS rHJ mAb could rescue up to 80% of the challenged animals if administered early and at a high dose. Our conclusions are that MV-A iNOS is a novel therapeutic target to treat sepsis; anti-MV-A iNOS mAbs can mitigate the harmful effects of MV-A iNOS; the neutralizing mAb's efficacy is both time- and dose-dependent; and a specifically targeted immunotherapeutic for MV-A iNOS could potentially save tens of thousands of lives annually and could result in improved antibiotic stewardship.
Subject(s)
Cell-Derived Microparticles/metabolism , Nitric Oxide Synthase Type II/metabolism , Sepsis/therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Cell-Derived Microparticles/immunology , Disease Models, Animal , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/immunology , Tumor Necrosis Factor-alpha/pharmacologyABSTRACT
INTRODUCTION: The fully-human monoclonal anti-interleukin (IL)-1ß antibody canakinumab may inhibit the production of inflammatory mediators in patients with coronavirus disease 2019 (COVID-19) and the hyperinflammatory response potentially leading to acute respiratory distress syndrome. OBJECTIVES: The goal of our retrospective, observational analysis was to evaluate the safety and efficacy of subcutaneous (s.c.) canakinumab in combination with our standard of care (SOC) treatment of selected patients with COVID-19 with respiratory failure and elevated reactive pro-inflammatory markers. METHODS: Eight participants received two doses of s.c. canakinumab 150 mg (or 2 mg/kg for participants weighing ≤40 kg) in addition to SOC. 12 patients received only SOC treatment. RESULTS: Canakinumab treatment reduced the need for mechanical ventilation and reduced proinflammatory markers, resulting in an amelioration of the final outcome, with respect to the control group who received SOC alone. The treatment was safe and well tolerated; no adverse events were reported. CONCLUSION: The use of canakinumab (300 mg, s.c.) in the early stage of COVID-19 with mild-to-moderate respiratory failure was superior to SOC at preventing clinical deterioration and may warrant further investigation as a treatment option for patients with COVID-19 who experience a hyperinflammatory response in the early stage of the disease.
Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Interleukin-1beta , Respiration, Artificial , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Biomarkers/blood , COVID-19/complications , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Dose-Response Relationship, Drug , Female , Humans , Inflammation Mediators/blood , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Italy/epidemiology , Male , Middle Aged , Monitoring, Immunologic/methods , Outcome and Process Assessment, Health Care , Patient Selection , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Time-to-TreatmentABSTRACT
Nanobodies (Nbs) have emerged as a promising class of biologics. Despite having marked physicochemical properties, Nbs are derived from camelids and may require humanization to improve translational potentials. By systematically analyzing the sequence and structural properties of Nbs, we found substantial framework diversities and revealed the key differences between Nbs and human immunoglobulin G antibodies. We identified conserved residues that may contribute to enhanced solubility, structural stability, and antigen binding, providing insights into Nb humanization. Based on big data analysis, we developed "Llamanade," an open-source software to facilitate rational humanization of Nbs. Using sequence as input, Llamanade can rapidly extract sequence features, model structures, and optimize solutions to humanize Nbs. Finally, we used Llamanade to successfully humanize a cohort of structurally diverse and potent SARS-CoV-2 neutralizing Nbs. Llamanade is freely available and will be easily accessible on a server to support the development of therapeutic Nbs into safe and effective trials.
Subject(s)
Antibodies, Monoclonal, Humanized/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Single-Domain Antibodies/chemistryABSTRACT
We have developed a monoclonal antibody (mAb) cocktail (ZRC-3308) comprising of ZRC3308-A7 and ZRC3308-B10 in the ratio 1:1 for COVID-19 treatment. The mAbs were designed to have reduced immune effector functions and increased circulation half-life. mAbs showed good binding affinities to non-competing epitopes on RBD of SARS-CoV-2 spike protein and were found neutralizing SARS-CoV-2 variants B.1, B.1.1.7, B.1.351, B.1.617.2, and B.1.617.2 AY.1 in vitro. The mAb cocktail demonstrated effective prophylactic and therapeutic activity against SARS-CoV-2 infection in Syrian hamsters. The antibody cocktail appears to be a promising candidate for prophylactic use and for therapy in early COVID-19 cases that have not progressed to severe disease.
Subject(s)
Antibodies, Monoclonal, Humanized/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibody Affinity , Binding Sites , COVID-19/prevention & control , Cricetinae , Disease Models, Animal , Epitopes , Humans , Immunization, Passive , Mesocricetus , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 SerotherapyABSTRACT
Cytokines in cardiac tissue plays a key role in progression of cardiometabolic diseases and cardiotoxicity induced by several anticancer drugs. Interleukin-1ß is one on the most studied regulator of cancer progression, survival and resistance to anticancer treatments. Recent findings indicate that interleukin1-ß exacerbates myocardial damages in cancer patients treated with chemotherapies and immune check-point inhibitors. Interleukin1-ß blocking agent canakinumab reduces major adverse cardiovascular events and cardiovascular death in recent cardiovascular trials. We focalized on the main biological functions of interleukin1-ß in cancer and cardiovascular diseases, summarizing the main clinical evidence available to date in literature. Especially in the era of SARS-CoV-2 infection, associated to coagulopathies, myocarditis and heart failure, cancer patients have an increased risk of cardiovascular complications compared to general population, therefore, the pharmacological inhibition of interleukin1-ß should be discussed and considered.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/adverse effects , COVID-19/complications , Cardiotoxicity/prevention & control , Interleukin-1beta/metabolism , Neoplasms/drug therapy , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/therapeutic use , COVID-19/virology , Cardiotoxicity/etiology , Cardiovascular Diseases/prevention & control , Humans , Interleukin-1beta/immunology , Neoplasms/complications , SARS-CoV-2/isolation & purificationABSTRACT
The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these "variants of concern" has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.
Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/transmission , Humans , India , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
There is controversy whether IL-6 (receptor) antagonists are beneficial in treating COVID-19 patients. We therefore update our systematic review to answer the following research questions: (1) Do patients hospitalized for COVID-19 treated with IL-6 (receptor) antagonists have lower mortality compared to standard of care? (2) Do patients hospitalized for COVID-19 treated with IL-6 (receptor) antagonists have more side effects compared to standard of care? The following databases were search up to December 1st 2020: PubMed, PMC PubMed Central, MEDLINE, WHO COVID-19 Database, Embase, Web-of-Science, COCHRANE LIBRARY, Emcare and Academic Search Premier. In order to pool the risk ratio (RR) and risk difference of individual studies we used random effects meta-analysis. The search strategy retrieved 2975 unique titles of which 71 studies (9 RCTs and 62 observational) studies comprising 29,495 patients were included. Mortality (RR 0.75) and mechanical ventilation (RR 0.78) were lower and the risk of neutropenia (RR 7.3), impaired liver function (RR 1.67) and secondary infections (RR 1.26) were higher for patients treated with IL-6 (receptor) antagonists compared to patients not treated with treated with IL-6 (receptor) antagonists. Our results showed that IL-6 (receptor) antagonists are effective in reducing mortality in COVID-19 patients, while the risk of side effects was higher. The baseline risk of mortality was an important effect modifier: IL-6 (receptor) antagonists were effective when the baseline mortality risk was high (e.g. ICU setting), while they could be harmful when the baseline mortality risk was low.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Receptors, Interleukin-6/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , COVID-19/mortality , COVID-19/virology , Humans , Odds Ratio , Respiration, Artificial , SARS-CoV-2/isolation & purification , Survival RateABSTRACT
Whether monoclonal antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralize authentic SARS-CoV-2, including variant B.1.1.7 (alpha), but variants B.1.351 (beta) and P.2 (zeta) were resistant against bamlanivimab and partially resistant to casirivimab. Whether antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantshas been investigated using pseudoviruses. We show that authentic SARS-CoV-2 carrying E484K were resistant against bamlanivimab and less susceptible to casirivimab, convalescent and vaccine-elicited sera.
Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Mutation, Missense , Neutralization TestsABSTRACT
The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.
Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antiviral Agents/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Protein BindingABSTRACT
The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In in vitro assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.
Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Amino Acid Sequence , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antibody-Dependent Enhancement , COVID-19/therapy , Conserved Sequence , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Protein Domains , Protein Interaction Domains and Motifs , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug TreatmentSubject(s)
COVID-19/pathology , SARS-CoV-2 , Thyroiditis, Autoimmune/pathology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Female , Genome, Viral/genetics , Humans , Italy , Middle Aged , Peru , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , World Health OrganizationABSTRACT
Interleukin-6 (IL-6) plays a crucial role in host defense against infection and tissue injuries and is a bioindicator of multiple distinct types of cytokine storms. In this review, we present the current understanding of the diverse roles of IL-6, its receptors, and its signaling during acute severe systemic inflammation. IL-6 directly affects vascular endothelial cells, which produce several types of cytokines and chemokines and activate the coagulation cascade. Endothelial cell dysregulation, characterized by abnormal coagulation and vascular leakage, is a common complication in cytokine storms. Emerging evidence indicates that a humanized anti-IL-6 receptor antibody, tocilizumab, can effectively block IL-6 signaling and has beneficial effects in rheumatoid arthritis, juvenile systemic idiopathic arthritis, and Castleman's disease. Recent work has also demonstrated the beneficial effect of tocilizumab in chimeric antigen receptor T-cell therapy-induced cytokine storms as well as coronavirus disease 2019 (COVID-19). Here, we highlight the distinct contributions of IL-6 signaling to the pathogenesis of several types of cytokine storms and discuss potential therapeutic strategies for the management of cytokine storms, including those associated with sepsis and COVID-19.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Antibodies, Monoclonal, Humanized/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokines/genetics , Cytokines/metabolism , Endothelium, Vascular/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Sepsis/prevention & controlABSTRACT
The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.
Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Convalescence , Immune Evasion/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , France , Humans , India/epidemiology , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
Circulating concentrations of the pleiotropic cytokine interleukin-6 (IL-6) are known to be increased in pro-inflammatory critical care syndromes, such as sepsis and acute respiratory distress syndrome. Elevations in serum IL-6 concentrations in patients with severe COVID-19 have led to renewed interest in the cytokine as a therapeutic target. However, although the pro-inflammatory properties of IL-6 are widely known, the cytokine also has a series of important physiological and anti-inflammatory functions. An adequate understanding of the complex processes by which IL-6 signalling occurs is crucial for the correct interpretation of IL-6 concentrations in the blood or lung, the use of IL-6 as a critical care biomarker, or the design of effective anti-IL-6 strategies. Here, we outline the role of IL-6 in health and disease, explain the different types of IL-6 signalling and their contribution to the net biological effect of the cytokine, describe the approaches to IL-6 inhibition that are currently available, and discuss implications for the future use of treatments such as tocilizumab in the critical care setting.