Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Science ; 375(6584): 1048-1053, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1673339

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
2.
Cell Rep ; 38(9): 110428, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1670282

ABSTRACT

The recently reported B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 34 mutations in the spike protein relative to the Wuhan strain, including 15 mutations in the receptor-binding domain (RBD). Functional studies have shown Omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here, we report a 3.1 Å-resolution cryoelectron microscopy (cryo-EM) structure of the Omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with high mobility of RBD. Many mutations cause steric clashes and/or altered interactions at antibody-binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the Omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.


Subject(s)
Cryoelectron Microscopy , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Humans , Immune Evasion/genetics , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Structure, Quaternary , SARS-CoV-2/genetics , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/genetics
3.
Science ; 375(6582): 782-787, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1650668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cross Reactions , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Phys Chem Chem Phys ; 24(5): 3410-3419, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1650366

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Immune Evasion/genetics , Mutation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Thermodynamics
5.
Sci Rep ; 12(1): 1260, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1648095

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a molecular method for neutralizing MERS-CoV through potent antibody-mediated targeting of the receptor-binding subdomain (RBD) of the spike protein. The structural characterization of the neutralizing antibody (KNIH90-F1) complexed with RBD using X-ray crystallography revealed three critical epitopes (D509, R511, and E513) in the RBD region of the spike protein. Further investigation of MERS-CoV mutants that escaped neutralization by the antibody supported the identification of these epitopes in the RBD region. The neutralizing activity of this antibody is solely provided by these specific molecular structures. This work should contribute to the development of vaccines or therapeutic antibodies for MERS-CoV.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Middle East Respiratory Syndrome Coronavirus/chemistry , Crystallography, X-Ray , Humans , Protein Domains
6.
PLoS One ; 17(1): e0262868, 2022.
Article in English | MEDLINE | ID: covidwho-1643287

ABSTRACT

A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.


Subject(s)
Antibodies, Viral/chemistry , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/chemistry , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Male , Middle Aged , New York/epidemiology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2/classification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
7.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
8.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625933

ABSTRACT

The COVID-19 epidemic is raging around the world. Neutralizing antibodies are powerful tools for the prevention and treatment of SARS-CoV-2 infection. Antibody CR3022, a SARS-CoV neutralizing antibody, was found to cross-react with SARS-CoV-2, but its affinity was lower than that of its binding with SARS-CoV, which greatly limited the further development of CR3022 against SARS-CoV-2. Therefore, it is necessary to improve its affinity to SARS-CoV-2 in vitro. In this study, the structure-based molecular simulations were utilized to virtually mutate the possible key residues in the complementarity-determining regions (CDRs) of the CR3022 antibody. According to the criteria of mutation energy, the mutation sites that have the potential to impact the antibody affinity were then selected. Then optimized CR3022 mutants with the enhanced affinity were further identified and verified by enzyme-linked immunosorbent assay (ELISA), surface plasma resonance (SPR) and autoimmune reactivity experiments. Finally, molecular dynamics (MD) simulation and binding free energy calculation (MM/PBSA) were performed on the wild-type CR3022 and its two double-site mutants to understand in more detail the contribution of these sites to the higher affinity. It was found that the binding affinity of the CR3022 antibody could be significantly enhanced more than ten times after the introduction of the S103F/Y mutation in HCDR-3 and the S33R mutation in LCDR-1. The additional hydrogen-bonding, hydrophobic interactions, as well as salt-bridges formed between the modified double-site mutated antibody and SARS-CoV-2 RBD were identified. The computational and experimental results clearly demonstrated that the affinity of the modified antibody has been greatly enhanced. This study indicates that CR3022 as a neutralizing antibody recognizing the conserved region of RBD against SARS-CoV with cross-reactivity with SARS-CoV-2, a different member in a large family of coronaviruses, could be improved by the computational and experimental approaches which provided insights for developing antibody drugs against SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibody Affinity , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cross Reactions , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology
9.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Article in English | MEDLINE | ID: covidwho-1619980

ABSTRACT

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Subject(s)
Antigens, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Epitopes, B-Lymphocyte/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Reactions/genetics , Antigen-Antibody Reactions/immunology , Computational Biology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/immunology , Databases, Chemical , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Mice , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Single-Domain Antibodies/immunology
10.
Front Immunol ; 12: 766821, 2021.
Article in English | MEDLINE | ID: covidwho-1581335

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and spread around the world, antibodies and vaccines to confer broad and potent neutralizing activity are urgently needed. Through the isolation and characterization of monoclonal antibodies (mAbs) from individuals infected with SARS-CoV-2, we identified one antibody, P36-5D2, capable of neutralizing the major SARS-CoV-2 variants of concern. Crystal and electron cryo-microscopy (cryo-EM) structure analyses revealed that P36-5D2 targeted to a conserved epitope on the receptor-binding domain of the spike protein, withstanding the three key mutations-K417N, E484K, and N501Y-found in the variants that are responsible for escape from many potent neutralizing mAbs, including some already approved for emergency use authorization (EUA). A single intraperitoneal (IP) injection of P36-5D2 as a prophylactic treatment completely protected animals from challenge of infectious SARS-CoV-2 Alpha and Beta. Treated animals manifested normal body weight and were devoid of infection-associated death up to 14 days. A substantial decrease of the infectious virus in the lungs and brain, as well as reduced lung pathology, was found in these animals compared to the controls. Thus, P36-5D2 represents a new and desirable human antibody against the current and emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , HEK293 Cells , Humans , Immunization, Passive , Mice
11.
Rev Med Virol ; 31(6): e2231, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574317

ABSTRACT

The Spike protein is the target of both antibody-based therapeutics (convalescent plasma, polyclonal serum, monoclonal antibodies) and vaccines. Mutations in Spike could affect efficacy of those treatments. Hence, monitoring of mutations is necessary to forecast and readapt the inventory of therapeutics. Different phylogenetic nomenclatures have been used for the currently circulating SARS-CoV-2 clades. The Spike protein has different hotspots of mutation and deletion, the most dangerous for immune escape being the ones within the receptor binding domain (RBD), such as K417N/T, N439K, L452R, Y453F, S477N, E484K, and N501Y. Convergent evolution has led to different combinations of mutations among different clades. In this review we focus on the main variants of concern, that is, the so-called UK (B.1.1.7), South African (B.1.351) and Brazilian (P.1) strains.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/therapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibodies, Viral/therapeutic use , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Gene Expression , Humans , Immune Evasion , Immunization, Passive/methods , Mutation , Phylogeny , Protein Binding , Risk Assessment , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/immunology , United Kingdom/epidemiology
12.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1559379

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
Front Immunol ; 12: 778829, 2021.
Article in English | MEDLINE | ID: covidwho-1555677

ABSTRACT

Since the coronavirus disease outbreak in 2019, several antibody therapeutics have been developed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Antibody therapeutics are effective in neutralizing the virus and reducing hospitalization in patients with mild and moderate infections. These therapeutics target the spike protein of SARS-CoV-2; however, emerging mutations in this protein reduce their efficiency. In this study, we developed a universal SARS-CoV-2 neutralizing antibody. We generated a humanized monoclonal antibody, MG1141A, against the receptor-binding domain of the spike protein through traditional mouse immunization. We confirmed that MG1141A could effectively neutralize live viruses, with an EC50 of 92 pM, and that it exhibited effective Fc-mediated functions. Additionally, it retained its neutralizing activity against the alpha (UK), beta (South Africa), and gamma (Brazil) variants of SARS-CoV-2. Taken together, our study contributes to the development of a novel antibody therapeutic approach, which can effectively combat emerging SARS-CoV-2 mutations.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Antibody Affinity , COVID-19/immunology , Complementarity Determining Regions/chemistry , Epitopes , Humans , Immunization , Mice , Molecular Docking Simulation , Protein Interaction Domains and Motifs , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Emerg Microbes Infect ; 11(1): 18-29, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1532383

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 variants have continued to emerge in diverse geographic locations with a temporal distribution. The Lambda variant containing multiple mutations in the spike protein, has thus far appeared mainly in South America. The variant harbours two mutations in the receptor binding domain, L452Q and F490S, which may change its infectivity and antigenicity to neutralizing antibodies. In this study, we constructed 10 pseudoviruses to study the Lambda variant and each individual amino acid mutation's effect on viral function, and used eight cell lines to study variant infectivity. In total, 12 monoclonal antibodies, 14 convalescent sera, and 23 immunized sera induced by mRNA vaccines, inactivated vaccine, and adenovirus type 5 vector vaccine were used to study the antigenicity of the Lambda variant. We found that compared with the D614G reference strain, Lambda demonstrated enhanced infectivity of Calu-3 and LLC-MK2 cells by 3.3-fold and 1.6-fold, respectively. Notably, the sensitivity of the Lambda variant to 5 of 12 neutralizing monoclonal antibodies, 9G11, AM180, R126, X593, and AbG3, was substantially diminished. Furthermore, convalescent- and vaccine-immunized sera showed on average 1.3-2.5-fold lower neutralizing titres against the Lambda variant. Single mutation analysis revealed that this reduction in neutralization was caused by L452Q and F490S mutations. Collectively, the reduced neutralization ability of the Lambda variant suggests that the efficacy of monoclonal antibodies and vaccines may be compromised during the current pandemic.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cell Line , Host-Pathogen Interactions , Humans , Immune Sera , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Structure-Activity Relationship
16.
Sci Rep ; 11(1): 22202, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514421

ABSTRACT

SARS-CoV-2 is responsible for COVID-19 pandemic, causing large numbers of cases and deaths. It initiates entry into human cells by binding to the peptidase domain of angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain of S1 subunit of spike protein (SARS-CoV-2-RBD). Employing neutralizing antibodies to prevent binding between SARS-CoV-2-RBD and ACE2 is an effective COVID-19 therapeutic solution. Previous studies found that CC12.3 is a highly potent neutralizing antibody that was isolated from a SARS-CoV-2 infected patient, and its Fab fragment (Fab CC12.3) bound to SARS-CoV-2-RBD with comparable binding affinity to ACE2. To enhance its binding affinity, we employed computational protein design to redesign all CDRs of Fab CC12.3 and molecular dynamics (MD) to validate their predicted binding affinities by the MM-GBSA method. MD results show that the predicted binding affinities of the three best designed Fabs CC12.3 (CC12.3-D02, CC12.3-D05, and CC12.3-D08) are better than those of Fab CC12.3 and ACE2. Additionally, our results suggest that enhanced binding affinities of CC12.3-D02, CC12.3-D05, and CC12.3-D08 are caused by increased SARS-CoV-2-RBD binding interactions of CDRs L1 and L3. This study redesigned neutralizing antibodies with better predicted binding affinities to SARS-CoV-2-RBD than Fab CC12.3 and ACE2. They are promising candidates as neutralizing antibodies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Immunoglobulin Fab Fragments/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Binding Sites , Humans , Immunoglobulin Fab Fragments/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
17.
Proteins ; 90(3): 824-834, 2022 03.
Article in English | MEDLINE | ID: covidwho-1508933

ABSTRACT

The coronavirus disease 2019 (COVID-19) has affected the lives of millions of people around the world. In an effort to develop therapeutic interventions and control the pandemic, scientists have isolated several neutralizing antibodies against SARS-CoV-2 from the vaccinated and convalescent individuals. These antibodies can be explored further to understand SARS-CoV-2 specific antigen-antibody interactions and biophysical parameters related to binding affinity, which can be utilized to engineer more potent antibodies for current and emerging SARS-CoV-2 variants. In the present study, we have analyzed the interface between spike protein of SARS-CoV-2 and neutralizing antibodies in terms of amino acid residue propensity, pair preference, and atomic interaction energy. We observed that Tyr residues containing contacts are highly preferred and energetically favorable at the interface of spike protein-antibody complexes. We have also developed a regression model to relate the experimental binding affinity for antibodies using structural features, which showed a correlation of 0.93. Moreover, several mutations at the spike protein-antibody interface were identified, which may lead to immune escape (epitope residues) and improved affinity (paratope residues) in current/emerging variants. Overall, the work provides insights into spike protein-antibody interactions, structural parameters related to binding affinity and mutational effects on binding affinity change, which can be helpful to develop better therapeutics against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/chemistry , Binding Sites, Antibody , Epitopes/chemistry , Epitopes/immunology , Humans , Molecular Docking Simulation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
18.
Theranostics ; 12(1): 1-17, 2022.
Article in English | MEDLINE | ID: covidwho-1512993

ABSTRACT

Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , COVID-19/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Binding Sites , Binding, Competitive , COVID-19/virology , Cricetinae , Cryoelectron Microscopy , Crystallography, X-Ray , Dogs , Epitopes , Female , Humans , Madin Darby Canine Kidney Cells , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
19.
Sci Rep ; 11(1): 21735, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1504063

ABSTRACT

The COVID19 pandemic, caused by SARS-CoV-2, has infected more than 200 million people worldwide. Due to the rapid spreading of SARS-CoV-2 and its impact, it is paramount to find effective treatments against it. Human neutralizing antibodies are an effective method to fight viral infection. However, the recent discovery of new strains that substantially change the S-protein sequence has raised concern about vaccines and antibodies' effectiveness. Here, using molecular simulations, we investigated the binding mechanisms between the S-protein and several antibodies. Multiple mutations were included to understand the strategies for antibody escape in new variants. We found that the combination of mutations K417N, E484K, L452R, and T478K produced higher binding energy to ACE2 than the wild type, suggesting higher efficiency to enter host cells. The mutations' effect depends on the antibody class. While Class I enhances the binding avidity in the presence of N501Y mutation, class II antibodies showed a sharp decline in the binding affinity. Our simulations suggest that Class I antibodies will remain effective against the new strains. In contrast, Class II antibodies will have less affinity to the S-protein, potentially affecting these antibodies' efficiency.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Cluster Analysis , Computational Biology , Computer Simulation , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism
20.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: covidwho-1502530

ABSTRACT

Nanobodies are 130 amino acid single-domain antibodies (VHH) derived from the unique heavy-chain-only subclass of Camelid immunogloblins. Their small molecular size, facile expression, high affinity and stability have combined to make them unique targeting reagents with numerous applications in the biomedical sciences. The first nanobody agent has now entered the clinic as a treatment against a blood disorder. The spread of the SARS-CoV-2 virus has seen the global scientific endeavour work to accelerate the development of technologies to try to defeat a pandemic that has now killed over four million people. In a remarkably short period of time, multiple studies have reported nanobodies directed against the viral Spike protein. Several agents have been tested in culture and demonstrate potent neutralisation of the virus or pseudovirus. A few agents have completed animal trials with very encouraging results showing their potential for treating infection. Here, we discuss the structural features that guide the nanobody recognition of the receptor binding domain of the Spike protein of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/therapy , COVID-19/virology , Epitopes/chemistry , Humans , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL