Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add filters

Document Type
Year range
1.
Front Immunol ; 12: 689065, 2021.
Article in English | MEDLINE | ID: covidwho-1502324

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The US FDA has approved several therapeutics and vaccines worldwide through the emergency use authorization in response to the rapid spread of COVID-19. Nevertheless, the efficacies of these treatments are being challenged by viral escape mutations. There is an urgent need to develop effective treatments protecting against SARS-CoV-2 infection and to establish a stable effect-screening model to test potential drugs. Polyclonal antibodies (pAbs) have an intrinsic advantage in such developments because they can target rapidly mutating viral strains as a result of the complexity of their binding epitopes. In this study, we generated anti-receptor-binding domain (anti-RBD) pAbs from rabbit serum and tested their safety and efficacy in response to SARS-CoV-2 infection both in vivo and ex vivo. Primary human bronchial epithelial two-dimensional (2-D) organoids were cultured and differentiated to a mature morphology and subsequently employed for SARS-CoV-2 infection and drug screening. The pAbs protected the airway organoids from viral infection and tissue damage. Potential side effects were tested in mouse models for both inhalation and vein injection. The pAbs displayed effective viral neutralization effects without significant side effects. Thus, the use of animal immune serum-derived pAbs might be a potential therapy for protection against SARS-CoV-2 infection, with the strategy developed to produce these pAbs providing new insight into the treatment of respiratory tract infections, especially for infections with viruses undergoing rapid mutation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Binding Sites , Bronchi/cytology , COVID-19/genetics , COVID-19/therapy , Epithelial Cells , Gene Expression Profiling , Humans , Immunization, Passive , Mice , Mutation , Neutralization Tests , Organoids , Rabbits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
2.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
3.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470551

ABSTRACT

BACKGROUNDCOVID-19 convalescent plasma (CCP) has been considered a treatment option for COVID-19. This trial assessed the efficacy of a neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.METHODSPatients (n = 105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. The primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21.ResultsThe primary outcome occurred in 43.4% of patients in the CCP group and 32.7% in the control group (P = 0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (P = 0.27). The median time to discharge from the hospital was 31 days in the CCP group and 51 days in the control group (P = 0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies, the primary outcome occurred in 56.0% of the patients (vs. 32.1%), with significantly shorter intervals to clinical improvement (20 vs. 66 days, P < 0.05) and to hospital discharge (21 vs. 51 days, P = 0.03) and better survival (day-60 probability of survival 91.6% vs. 68.1%, P = 0.02) in comparison with the control group.ConclusionCCP added to standard treatment was not associated with a significant improvement in the primary and secondary outcomes. A predefined subgroup analysis showed a significant benefit of CCP among patients who received a larger amount of neutralizing antibodies.Trial registrationClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health): ZMVI1-2520COR802.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/administration & dosage , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/physiopathology , Combined Modality Therapy , Cross-Over Studies , Female , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Kaplan-Meier Estimate , Male , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome
4.
PLoS Pathog ; 17(10): e1009542, 2021 10.
Article in English | MEDLINE | ID: covidwho-1468184

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.


Subject(s)
Antibodies, Viral/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 , Single-Domain Antibodies/administration & dosage , Virus Attachment/drug effects , Administration, Intranasal , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
5.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
6.
Front Immunol ; 12: 690322, 2021.
Article in English | MEDLINE | ID: covidwho-1403471

ABSTRACT

A convalescent, non-severe, patient with COVID-19 was enrolled as a hyper-immune plasma voluntary donor by the Immuno-Hematology and Transfusion Unit of the Regina Elena National Cancer Institute in Rome, under the TSUNAMI national study criteria. During a nearly 6-month period (May-October 2020), the patient was closely monitored and underwent four hyperimmune plasma collections. Serum SARS-CoV-2 (anti-S + anti-N) IgG and IgM, anti-S1 IgA, and neutralizing titers (NTs) were measured. Anti-SARS-CoV-2 antibody levels steadily decreased. No correlation was found between anti-S/anti-N IgG and IgM levels and viral NT, measured by either a microneutralization test or the surrogate RBD/ACE2-binding inhibition test. Conversely, NTs directly correlated with anti-S1 IgA levels. Hyperimmune donor plasma, administered to five SARS-CoV-2 patients with persistent, severe COVID-19 symptoms, induced short-term clinical and pathological improvement. Reported data suggest that high NTs can persist longer than expected, thus widening hyperimmune plasma source, availability, and potential use. In vitro RBD/ACE2-binding inhibition test is confirmed as a convenient surrogate index for neutralizing activity and patients' follow-up, suitable for clinical settings where biosafety level 3 facilities are not available. IgA levels may correlate with serum neutralizing activity and represent a further independent index for patient evaluation.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , COVID-19/virology , Humans , Immunization, Passive , Immunoglobulin A/administration & dosage , Immunoglobulin A/blood , Immunoglobulin A/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Treatment Outcome
7.
EBioMedicine ; 71: 103544, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363987

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with spike receptor binding domain (RBD) N501Y mutation have spread globally. We evaluated the impact of N501Y on neutralizing activity of COVID-19 convalescent sera and on anti-RBD IgG assays. METHODS: The susceptibility to neutralization by COVID-19 patients' convalescent sera from Hong Kong were compared between two SARS-CoV-2 isolates (B117-1/B117-2) from the α variant with N501Y and 4 non-N501Y isolates. The effect of N501Y on antibody binding was assessed. The performance of commercially-available IgG assays was determined for patients infected with N501Y variants. FINDINGS: The microneutralization antibody (MN) titers of convalescent sera from 9 recovered COVID-19 patients against B117-1 (geometric mean titer[GMT],80; 95% CI, 47-136) were similar to those against the non-N501Y viruses. However, MN titer of these serum against B117-2 (GMT, 20; 95% CI, 11-36) was statistically significantly reduced when compared with non-N501Y viruses (P < 0.01; one-way ANOVA). The difference between B117-1 and B117-2 was confirmed by testing 60 additional convalescent sera. B117-1 and B117-2 differ by only 3 amino acids (nsp2-S512Y, nsp13-K460R, spike-A1056V). Enzyme immunoassay using 272 convalescent sera showed reduced binding of anti-RBD IgG to N501Y or N501Y-E484K-K417N when compared with that of wild-type RBD (mean difference: 0.1116 and 0.5613, respectively; one-way ANOVA). Of 7 anti-N-IgG positive sera from patients infected with N501Y variants (collected 9-14 days post symptom onset), 6 (85.7%) tested negative for a commercially-available anti-S1-IgG assay. FUNDING: Richard and Carol Yu, Michael Tong, and the Government Consultancy Service (see acknowledgments for full list). INTERPRETATION: We highlighted the importance of using a panel of viruses within the same lineage to determine the impact of virus variants on neutralization. Furthermore, clinicians should be aware of the potential reduced sensitivity of anti-RBD IgG assays.


Subject(s)
COVID-19/therapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/ultrastructure , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunization, Passive , Male , Middle Aged , Mutation/genetics , Neutralization Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
8.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1335231

ABSTRACT

Despite the recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of the SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2, retains full activity against the variant of concern (VOC) B.1.1.7 and still neutralizes the VOC B.1.351, although with reduced potency. Importantly, not only systemic but also intranasal application of DZIF-10c abolished the presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology when administered prophylactically. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , Animals , COVID-19/virology , Female , Humans , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology
9.
Front Immunol ; 12: 683902, 2021.
Article in English | MEDLINE | ID: covidwho-1282386

ABSTRACT

Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis®). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis® owing to their low titer and large infused volume. Here we report a new drug class of immunoglobulins, derived from human non hyper-immune plasma that was generated by an innovative bioprocess, called Ig cracking, combining expertises in plasma-derived products and affinity chromatography. By using the RSV fusion protein (F protein) as ligand, the Ig cracking process provided a purified and concentrated product, designated hyper-enriched anti-RSV IgG, composed of at least 15-20% target-specific-antibodies from normal plasma. These anti-RSV Ig displayed a strong in vitro neutralization effect on RSV replication. Moreover, we described a novel prophylactic strategy based on local nasal administration of this unique hyper-enriched anti-RSV IgG solution using a mouse model of infection with bioluminescent RSV. Our results demonstrated that very low doses of hyper-enriched anti-RSV IgG can be administered locally to ensure rapid and efficient inhibition of virus infection. Thus, the general hyper-enriched Ig concept appeared a promising approach and might provide solutions to prevent and treat other infectious diseases. Importance: Respiratory Syncytial Virus (RSV) is the major cause of acute lower respiratory infections in children, and is also recognized as a cause of morbidity in the elderly. There are still no vaccines and no efficient antiviral therapy against this virus. Here, we described an approach of passive immunization with a new class of hyper-enriched anti-RSV immunoglobulins (Ig) manufactured from human normal plasma. This new class of immunoglobulin plasma derived product is generated by an innovative bioprocess, called Ig cracking, which requires a combination of expertise in both plasma derived products and affinity chromatography. The strong efficacy in a small volume of these hyper-enriched anti-RSV IgG to inhibit the viral infection was demonstrated using a mouse model. This new class of immunoglobulin plasma-derived products could be applied to other pathogens to address specific therapeutic needs in the field of infectious diseases or even pandemics, such as COVID-19.


Subject(s)
Antibodies, Viral/administration & dosage , Immunization, Passive , Immunoglobulin G/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Administration, Intranasal , Animals , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Disease Models, Animal , Humans , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Lung/drug effects , Lung/virology , Neutralization Tests , Respiratory Syncytial Virus Infections/virology , Turbinates/drug effects , Turbinates/virology , Viral Fusion Proteins/immunology , Virus Replication/drug effects
10.
Front Immunol ; 12: 675679, 2021.
Article in English | MEDLINE | ID: covidwho-1231340

ABSTRACT

Background: COVID-19 Convalescent plasma (CCP) is safe and effective, particularly if given at an early stage of the disease. Our study aimed to identify an association between survival and specific antibodies found in CCP. Patients and Methods: Patients ≥18 years of age who were hospitalized with moderate to severe COVID-19 infection and received CCP at the MD Anderson Cancer Center between 4/30/2020 and 8/20/2020 were included in the study. We quantified the levels of anti-SARS-CoV-2 antibodies, as well as antibodies against antigens of other coronavirus strains, in the CCP units and compared antibody levels with patient outcomes. For each antibody, a Bayesian exponential survival time regression model including prognostic variables was fit, and the posterior probability of a beneficial effect (PBE) of higher antibody level on survival time was computed. Results: CCP was administered to 44 cancer patients. The median age was 60 years (range 37-84) and 19 (43%) were female. Twelve patients (27%) died of COVID-19-related complications. Higher levels of two non-SARS-CoV-2-specific antibodies, anti-HCoV-OC43 spike IgG and anti-HCoV-HKU1 spike IgG, had PBE = 1.00, and 4 SARS-CoV-2-specific antibodies had PBEs between 0.90 and 0.95. Other factors associated with better survival were shorter time to CCP administration, younger age, and female sex. Conclusions: Common cold coronavirus spike IgG antibodies anti-HCoV-OC43 and anti-HCoV-HKU1 may target a common domain for SARS-CoV-2 and other coronaviruses. They provide a promising therapeutic target for monoclonal antibody production.


Subject(s)
Antibodies, Viral , Betacoronavirus/immunology , COVID-19/therapy , Common Cold/immunology , Convalescence , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/administration & dosage , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/mortality , Cross Reactions , Female , Humans , Immunization, Passive , Male , Middle Aged
11.
Front Immunol ; 12: 613502, 2021.
Article in English | MEDLINE | ID: covidwho-1221945

ABSTRACT

In these times of COVID-19 pandemic, concern has been raised about the potential effects of SARS-CoV-2 infection on immunocompromised patients, particularly on those receiving B-cell depleting agents and having therefore a severely depressed humoral response. Convalescent plasma can be a therapeutic option for these patients. Understanding the underlying mechanisms of convalescent plasma is crucial to optimize such therapeutic approach. Here, we describe a COVID-19 patient who was deeply immunosuppressed following rituximab (anti-CD20 monoclonal antibody) and concomitant chemotherapy for chronic lymphoid leukemia. His long-term severe T and B cell lymphopenia allowed to evaluate the treatment effects of convalescent plasma. Therapeutic outcome was monitored at the clinical, biological and radiological level. Moreover, anti-SARS-CoV-2 antibody titers (IgM, IgG and IgA) and neutralizing activity were assessed over time before and after plasma transfusions, alongside to SARS-CoV-2 RNA quantification and virus isolation from the upper respiratory tract. Already after the first cycle of plasma transfusion, the patient experienced rapid improvement of pneumonia, inflammation and blood cell counts, which may be related to the immunomodulatory properties of plasma. Subsequently, the cumulative increase in anti-SARS-CoV-2 neutralizing antibodies due to the three additional plasma transfusions was associated with progressive and finally complete viral clearance, resulting in full clinical recovery. In this case-report, administration of convalescent plasma revealed a stepwise effect with an initial and rapid anti-inflammatory activity followed by the progressive SARS-CoV-2 clearance. These data have potential implications for a more extended use of convalescent plasma and future monoclonal antibodies in the treatment of immunosuppressed COVID-19 patients.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/drug therapy , COVID-19/immunology , COVID-19/therapy , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Bendamustine Hydrochloride/therapeutic use , Diabetes Mellitus, Type 2/complications , Humans , Immunization, Passive/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Leukemia, Lymphoid/complications , Leukemia, Lymphoid/drug therapy , Male , Rituximab/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
12.
Front Immunol ; 11: 581076, 2020.
Article in English | MEDLINE | ID: covidwho-1116666

ABSTRACT

COVID-19 has become difficult to contain in our interconnected world. In this article, we discuss some approaches that could reduce the consequences of COVID-19. We elaborate upon the utility of camelid single-domain antibodies (sdAbs), also referred to as nanobodies, which are naturally poised to neutralize viruses without enhancing its infectivity. Smaller sized sdAbs can be easily selected using microbes or the subcellular organelle display methods and can neutralize SARS-CoV2 infectivity. We also discuss issues related to their production using scalable platforms. The favorable outcome of the infection is evident in patients when the inflammatory response is adequately curtailed. Therefore, we discuss approaches to mitigate hyperinflammatory reactions initiated by SARS-CoV2 but orchestrated by immune mediators.


Subject(s)
Antibodies, Viral/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Single-Domain Antibodies/administration & dosage , COVID-19/immunology , COVID-19/virology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology
13.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1095899

ABSTRACT

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , B-Lymphocytes/immunology , COVID-19 , Convalescence , 3T3 Cells , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , B-Lymphocytes/cytology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/immunology , Male , Mice , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
14.
Clin J Oncol Nurs ; 25(1): 28-32, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1082805

ABSTRACT

Convalescent plasma has emerged as a treatment that merits consideration for COVID-19-positive patients requiring hospitalization. With millions of cases of COVID-19 being reported worldwide, nurses across specialties are caring for infected patients and are often the primary patient educators about convalescent plasma treatment. Keeping abreast of current clinical guidelines and evidence-based practice allows nurses to identify patients who should be considered for treatment, understand the administration guidelines, and be aware of the toxicity profile to provide safe and high-quality care to patients. The purpose of this article is to provide information on convalescent plasma as a treatment for COVID-19.


Subject(s)
Antibodies, Viral/administration & dosage , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/therapy , Health Personnel/education , Immunization, Passive/standards , Plasma/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Practice Guidelines as Topic , SARS-CoV-2 , Treatment Outcome
15.
Nat Commun ; 12(1): 944, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1078588

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterize and further evaluate the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection, while administration of the MD65 antibody as late as 3 days after exposure rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data demonstrate the therapeutic value of human monoclonal antibodies as a life-saving treatment for severe COVID-19 infection.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/drug therapy , Chlorocebus aethiops , Female , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/classification , SARS-CoV-2/physiology , Seroconversion , Vero Cells , Viral Load
16.
J Infect Dis ; 222(12): 1974-1984, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-1059701

ABSTRACT

BACKGROUND: Convalescent plasma therapy is a leading treatment for conferring temporary immunity to COVID-19-susceptible individuals or for use as post-exposure prophylaxis. However, not all recovered patients develop adequate antibody titers for donation and the relationship between avidity and neutralizing titers is currently not well understood. METHODS: SARS-CoV-2 anti-spike and anti-nucleocapsid IgG titers and avidity were measured in a longitudinal cohort of COVID-19 hospitalized patients (n = 16 individuals) and a cross-sectional sample of convalescent plasma donors (n = 130). Epidemiologic correlates of avidity were examined in donors by linear regression. The association of avidity and a high neutralizing titer (NT) were also assessed in donors using modified Poisson regression. RESULTS: Antibody avidity increased over duration of infection and remained elevated. In convalescent plasma donors, higher levels of anti-spike avidity were associated with older age, male sex, and hospitalization. Higher NTs had a stronger positive correlation with anti-spike IgG avidity (Spearman ρ = 0.386; P < .001) than with anti-nucleocapsid IgG avidity (Spearman ρ = 0.211; P = .026). Increasing levels of anti-spike IgG avidity were associated with high NT (≥160) (adjusted prevalence ratio = 1.58 [95% confidence interval = 1.19-2.12]), independent of age, sex, and hospitalization. CONCLUSIONS: SARS-CoV-2 antibody avidity correlated with duration of infection and higher neutralizing titers, suggesting a potential alternative screening parameter for identifying optimal convalescent plasma donors.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antibody Affinity , COVID-19/therapy , Immunoglobulin G/administration & dosage , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , Cohort Studies , Cross-Sectional Studies , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Linear Models , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Young Adult
17.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: covidwho-1039949

ABSTRACT

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Female , Hospital Mortality , Humans , Immunization, Passive/methods , Male , Middle Aged , New York City/epidemiology , Propensity Score , Retrospective Studies , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome
19.
Front Immunol ; 11: 596761, 2020.
Article in English | MEDLINE | ID: covidwho-972668

ABSTRACT

The disease course of COVID-19 in patients with immunodeficiencies is unclear, as well as the optimal therapeutic strategy. We report a case of a 37-year old male with common variable immunodeficiency disorder and a severe SARS-CoV-2 infection. After administration of convalescent plasma, the patient's condition improved rapidly. Despite clinical recovery, viral RNA remained detectable up to 60 days after onset of symptoms. We propose that convalescent plasma might be considered as a treatment option in patients with CVID and severe COVID-19. In addition, in patients with immunodeficiencies, a different clinical course is possible, with prolonged viral shedding.


Subject(s)
Antibodies, Viral/administration & dosage , COVID-19/therapy , Common Variable Immunodeficiency , RNA, Viral , SARS-CoV-2 , Virus Shedding , Adult , COVID-19/blood , COVID-19/immunology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Humans , Immunization, Passive , Male , RNA, Viral/blood , RNA, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virus Shedding/drug effects , Virus Shedding/immunology
20.
J Clin Invest ; 130(12): 6728-6738, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-972513

ABSTRACT

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Immunoglobulin G , SARS-CoV-2 , Adolescent , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Female , Humans , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...