Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add filters

Year range
1.
Int Immunopharmacol ; 86: 106760, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-634138

ABSTRACT

Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.


Subject(s)
Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Biological Products/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Drug Design , Drug Discovery , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use
2.
Trials ; 21(1): 499, 2020 06 08.
Article in English | MEDLINE | ID: covidwho-768581

ABSTRACT

OBJECTIVES: The aim of this study is to evaluate the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in hospitalized adults with severe SARS-CoV-2 infection. TRIAL DESIGN: This is a prospective, single-center, phase 2, randomized, controlled trial that is blinded to participants and clinical outcome assessor. PARTICIPANTS: Eligible participants include adults (≥ 18 years) with evidence of SARS-CoV-2 infection by PCR test of nasopharyngeal or oropharyngeal swab within 14 days of randomization, evidence of infiltrates on chest radiography, peripheral capillary oxygen saturation (SpO2) ≤ 94% on room air, and/or need for supplemental oxygen, non-invasive mechanical ventilation, or invasive mechanical ventilation, who are willing and able to provide written informed consent prior to performing study procedures or who have a legally authorized representative available to do so. Exclusion criteria include participation in another clinical trial of anti-viral agent(s)* for coronavirus disease-2019 (COVID-19), receipt of any anti-viral agent(s)* with possible activity against SARS-CoV-2 <24 hours prior to plasma infusion, mechanical ventilation (including extracorporeal membrane oxygenation [ECMO]) for ≥ 5 days, severe multi-organ failure, history of allergic reactions to transfused blood products per NHSN/CDC criteria, known IgA deficiency, and pregnancy. Included participants will be hospitalized at the time of randomization and plasma infusion. *Use of remdesivir as treatment for COVID-19 is permitted. The study will be undertaken at Columbia University Irving Medical Center in New York, USA. INTERVENTION AND COMPARATOR: The investigational treatment is anti-SARS-CoV-2 human convalescent plasma. To procure the investigational treatment, volunteers who recovered from COVID-19 will undergo testing to confirm the presence of anti-SARS-CoV-2 antibody to the spike trimer at a 1:400 dilution. Donors will also be screened for transfusion-transmitted infections (e.g. HIV, HBV, HCV, WNV, HTLV-I/II, T. cruzi, ZIKV). If donors have experienced COVID-19 symptoms within 28 days, they will be screened with a nasopharyngeal swab to confirm they are SARS-CoV-2 PCR-negative. Plasma will be collected using standard apheresis technology by the New York Blood Center. Study participants will be randomized in a 2:1 ratio to receive one unit (200 - 250 mL) of anti-SARS-CoV-2 plasma versus one unit (200 - 250 mL) of the earliest available control plasma. The control plasma cannot be tested for presence of anti-SARS-CoV-2 antibody prior to the transfusion, but will be tested for anti- SARS-CoV-2 antibody after the transfusion to allow for a retrospective per-protocol analysis. MAIN OUTCOMES: The primary endpoint is time to clinical improvement. This is defined as time from randomization to either discharge from the hospital or improvement by one point on the following seven-point ordinal scale, whichever occurs first. 1. Not hospitalized with resumption of normal activities 2. Not hospitalized, but unable to resume normal activities 3. Hospitalized, not requiring supplemental oxygen 4. Hospitalized, requiring supplemental oxygen 5. Hospitalized, requiring high-flow oxygen therapy or non-invasive mechanical ventilation 6. Hospitalized, requiring ECMO, invasive mechanical ventilation, or both 7. Death This scale, designed to assess clinical status over time, was based on that recommended by the World Health Organization for use in determining efficacy end-points in clinical trials in hospitalized patients with COVID-19. A recent clinical trial evaluating the efficacy and safety of lopinavir- ritonavir for patients hospitalized with severe COVID-19 used a similar ordinal scale, as have recent clinical trials of novel therapeutics for severe influenza, including a post-hoc analysis of a trial evaluating immune plasma. The primary safety endpoints are cumulative incidence of grade 3 and 4 adverse events and cumulative incidence of serious adverse events during the study period. RANDOMIZATION: Study participants will be randomized in a 2:1 ratio to receive anti-SARS-CoV-2 plasma versus control plasma using a web-based randomization platform. Treatment assignments will be generated using randomly permuted blocks of different sizes to minimize imbalance while also minimizing predictability. BLINDING (MASKING): The study participants and the clinicians who will evaluate post-treatment outcomes will be blinded to group assignment. The blood bank and the clinical research team will not be blinded to group assignment. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): We plan to enroll 129 participants, with 86 in the anti-SARS-CoV-2 arm, and 43 in the control arm. Among the participants, we expect ~70% or n = 72 will achieve clinical improvement. This will yield an 80% power for a one-sided Wald test at 0.15 level of significance under the proportional hazards model with a hazard ratio of 1.5. TRIAL STATUS: Protocol AAAS9924, Version 17APR2020, 4/17/2020 Start of recruitment: April 20, 2020 Recruitment is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04359810 Date of trial registration: April 24, 2020 Retrospectively registered FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Clinical Trials, Phase II as Topic , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Pandemics , Prospective Studies
3.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: covidwho-748774

ABSTRACT

In this review, we address issues that relate to the rapid "Warp Speed" development of vaccines to counter the COVID-19 pandemic. We review the antibody response that is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of humans and how it may inform vaccine research. The isolation and properties of neutralizing monoclonal antibodies from COVID-19 patients provide additional information on what vaccines should try to elicit. The nature and longevity of the antibody response to coronaviruses are relevant to the potency and duration of vaccine-induced immunity. We summarize the immunogenicity of leading vaccine candidates tested to date in animals and humans and discuss the outcome and interpretation of virus challenge experiments in animals. By far the most immunogenic vaccine candidates for antibody responses are recombinant proteins, which were not included in the initial wave of Warp Speed immunogens. A substantial concern for SARS-CoV-2 vaccines is adverse events, which we review by considering what was seen in studies of SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) vaccines. We conclude by outlining the possible outcomes of the Warp Speed vaccine program, which range from the hoped-for rapid success to a catastrophic adverse influence on vaccine uptake generally.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Models, Animal , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/adverse effects
4.
Nat Commun ; 11(1): 4303, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-733523

ABSTRACT

The novel highly transmissible human coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Thus far, there is no approved therapeutic drug specifically targeting this emerging virus. Here we report the isolation and characterization of a panel of human neutralizing monoclonal antibodies targeting the SARS-CoV-2 receptor binding domain (RBD). These antibodies were selected from a phage display library constructed using peripheral circulatory lymphocytes collected from patients at the acute phase of the disease. These neutralizing antibodies are shown to recognize distinct epitopes on the viral spike RBD. A subset of the antibodies exert their inhibitory activity by abrogating binding of the RBD to the human ACE2 receptor. The human monoclonal antibodies described here represent a promising basis for the design of efficient combined post-exposure therapy for SARS-CoV-2 infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Betacoronavirus/metabolism , Chlorocebus aethiops , Epitope Mapping , Epitopes , Humans , Peptide Library , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
5.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: covidwho-726090

ABSTRACT

Type I interferons (IFN-I) are a major antiviral defense and are critical for the activation of the adaptive immune system. However, early viral clearance by IFN-I could limit antigen availability, which could in turn impinge upon the priming of the adaptive immune system. In this study, we hypothesized that transient IFN-I blockade could increase antigen presentation after acute viral infection. To test this hypothesis, we infected mice with viruses coadministered with a single dose of IFN-I receptor-blocking antibody to induce a short-term blockade of the IFN-I pathway. This resulted in a transient "spike" in antigen levels, followed by rapid antigen clearance. Interestingly, short-term IFN-I blockade after coronavirus, flavivirus, rhabdovirus, or arenavirus infection induced a long-lasting enhancement of immunological memory that conferred improved protection upon subsequent reinfections. Short-term IFN-I blockade also improved the efficacy of viral vaccines. These findings demonstrate a novel mechanism by which IFN-I regulate immunological memory and provide insights for rational vaccine design.


Subject(s)
Immunogenicity, Vaccine/immunology , Interferon Type I/antagonists & inhibitors , Interferon-alpha/immunology , Receptor, Interferon alpha-beta/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antibodies, Viral/immunology , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression/immunology , HEK293 Cells , Humans , Immunologic Memory , Interferon-alpha/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Transfection , Zika Virus Infection/virology
6.
Tidsskr Nor Laegeforen ; 140(11)2020 08 18.
Article in English, Norwegian | MEDLINE | ID: covidwho-724631

ABSTRACT

BACKGROUND: Robust serological assays for SARS-CoV-2 are essential for determining prior infection and the suitability of donated convalescent plasma for plasma therapy. We compared two in-house and three commercial serological assays in a family cohort with SARS-CoV-2-infected members. CASE PRESENTATION: Three individuals in a family of five developed COVID-19 confirmed by PCR, following a trip abroad. Three to four weeks after the onset of symptoms, three commercial ELISAs and an in-house immunofluorescence test demonstrated antibodies to SARS-CoV-2. An in-house neutralisation test also demonstrated neutralising antibodies. INTERPRETATION: The in-house assays and one commercial assay gave congruent results, which were also consistent with the initial PCR and/or clinical evaluation, indicating prior infection in three of the five family members. The other commercial assays indicated possible infection in a fourth family member, but this result was likely due to cross-reactivity. The neutralising antibodies suggest complete or partial immunity against reinfection.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus , Enzyme-Linked Immunosorbent Assay , Family Health , Fluorescent Antibody Technique , Humans , Neutralization Tests , Pandemics , Serologic Tests
8.
Nat Commun ; 11(1): 4081, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-717117

ABSTRACT

The unprecedented coronavirus disease 2019 (COVID-19) epidemic has created a worldwide public health emergency, and there is an urgent need to develop an effective vaccine to control this severe infectious disease. Here, we find that a single vaccination with a replication-defective human type 5 adenovirus encoding the SARS-CoV-2 spike protein (Ad5-nCoV) protect mice completely against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. Additionally, a single vaccination with Ad5-nCoV protects ferrets from wild-type SARS-CoV-2 infection in the upper respiratory tract. This study suggests that the mucosal vaccination may provide a desirable protective efficacy and this delivery mode is worth further investigation in human clinical trials.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Disease Models, Animal , Drug Design , Female , Genetic Vectors , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
11.
Monoclon Antib Immunodiagn Immunother ; 39(4): 107-111, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-696013

ABSTRACT

In this hypothesis, we address the biological/immunological pathway leading to severe disease or death after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune response is described with "original antigenic sin" (OAS) whereby previous infections influence the response to future virus encounters. We cite evidence for OAS-induced immunopathology in HIV-1 disease. We hypothesize that similar immune abnormalities can occur after infection with SARS-CoV-2. This hypothesis is supported by recent analysis of the antibodies in infected patients demonstrating serological and B cell abnormalities. The concept of symmetrical clonal regulation developed earlier for the immune network illustrates the pathway suggested by our hypothesis and may be helpful to develop strategies avoiding severe coronavirus disease 2019.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immune Evasion/immunology , Pneumonia, Viral/immunology , Antibodies, Monoclonal/immunology , Coronavirus Infections/pathology , Cross Reactions/immunology , Cytokine Release Syndrome/immunology , HIV/immunology , HIV-1/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Pandemics , Pneumonia, Viral/pathology
14.
Sci Immunol ; 5(49)2020 07 29.
Article in English | MEDLINE | ID: covidwho-690482

ABSTRACT

Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important for determining SARS-CoV-2 exposures within both individuals and populations. We validated a SARS-CoV-2 spike receptor binding domain serological test using 834 pre-pandemic samples and 31 samples from COVID-19 recovered donors. We then completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate exposure to SARS-CoV-2 within the community.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Health Status Disparities , Pneumonia, Viral/epidemiology , Pregnancy Complications, Infectious/epidemiology , Adult , African Americans/statistics & numerical data , Antibodies, Viral/immunology , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Hispanic Americans/statistics & numerical data , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Pandemics , Philadelphia/epidemiology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Protein Domains/immunology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
15.
Antiviral Res ; 181: 104882, 2020 09.
Article in English | MEDLINE | ID: covidwho-684270

ABSTRACT

SARS-CoV-2 is a novel pandemic coronavirus that caused a global health and economic crisis. The development of efficient drugs and vaccines against COVID-19 requires detailed knowledge about SARS-CoV-2 biology. Several techniques to detect SARS-CoV-2 infection have been established, mainly based on counting infected cells by staining plaques or foci, or by quantifying the viral genome by PCR. These methods are laborious, time-consuming and expensive and therefore not suitable for a high sample throughput or rapid diagnostics. We here report a novel enzyme-based immunodetection assay that directly quantifies the amount of de novo synthesized viral spike protein within fixed and permeabilized cells. This in-cell ELISA enables a rapid and quantitative detection of SARS-CoV-2 infection in microtiter format, regardless of the virus isolate or target cell culture. It follows the established method of performing ELISA assays and does not require expensive instrumentation. Utilization of the in-cell ELISA allows to e.g. determine TCID50 of virus stocks, antiviral efficiencies (IC50 values) of drugs or neutralizing activity of sera. Thus, the in-cell spike ELISA represents a promising alternative to study SARS-CoV-2 infection and inhibition and may facilitate future research.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/immunology , Animals , Betacoronavirus/isolation & purification , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/diagnosis , Severe Acute Respiratory Syndrome/diagnosis , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Plaque Assay
16.
Drug Des Devel Ther ; 14: 2607-2611, 2020.
Article in English | MEDLINE | ID: covidwho-683522

ABSTRACT

In March 2020, the WHO declared the COVID-19 disease as a pandemic disease. There have been studies on the COVID-19 to find a certain treatment, but yet, there is no certain cure. In this article, we present a possible way to treat severe cases of COVID-19. Based on the previous studies, there are similarities between the spike antigens of SARS-CoV and SARS-CoV-2 viruses. It is expected that these similarities (structural and affinity to the receptor of ACE2) can lead to the same pathophysiological activity of the virus by the use of ACE2 and FcγRII (the antibody-dependent enhancement mechanism). Therefore, we propose a way of washing out (by plasmapheresis) the possible antibodies against the spike protein of the virus out of patients' plasma to stop the antibody-dependent enhancement (ADE)-mediated infection of the immune system cells at the first phase of the treatment and simultaneous use of the anti-ACE2 with anti-FcγRII monoclonal antibodies at the second phase. We propose these procedures for the patients that have no significant response for typical anti-viral, ARDS and conservative therapies, and the disease persists or progresses despite sufficient therapies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Coronavirus Infections/therapy , Plasmapheresis/methods , Pneumonia, Viral/therapy , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Pandemics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, IgG/immunology , Severity of Illness Index
18.
Int J Mol Sci ; 21(14)2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-670344

ABSTRACT

Coronavirus 2 (CoV) Severe Acute Respiratory Syndrome (SARS-CoV2) is causing a highly infectious pandemic pneumonia. Coronaviruses are positive sense single-stranded RNA viruses that infect several animal species, causing symptoms that range from those similar to the common cold to severe respiratory syndrome. The Angiotensin Converting Enzyme 2 (ACE2) is the SARS-CoV2 functional receptor. Measures are currently undertaken worldwide to control the infection to avoid disruption of the social and economic equilibrium, especially in countries with poor healthcare resources. In a guarded optimistic view, we hope that the undertaken preventive and treatment measures will at least contribute to contain viral diffusion, attenuate activity, or even eliminate SARS-CoV2. In this review, we discuss emerging perspectives for prevention/treatment of COVID-19 infection. In addition to vaccines under development, passive immunization is an open opportunity since patients develop neutralizing antibodies. A full spectrum of potential drugs for COVID-19 infections could in turn affect virus binding or enzymatic activities involved in viral replication and transcription. Furthermore, clinical trials are currently evaluating the safety and efficacy of anti-inflammatory drugs, such as tocilizumab. Bioinformatics may allow characterization of specific CD8+ and CD4+ T cell responses; thus, CoV2 T cells' frequency can be correlated with the disease severity and outcome. Combinatorial antibody phage display may be empowered to identify the immune repertoire of CoV2-specific neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections , Immunization, Passive/methods , Pandemics , Pneumonia, Viral , A549 Cells , Animals , Anti-Inflammatory Agents/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/drug effects , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Lymphocyte Count , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
19.
Science ; 369(6499): 77-81, 2020 07 03.
Article in English | MEDLINE | ID: covidwho-667322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. Because of the novelty of the virus, there are currently no SARS-CoV-2-specific treatments or vaccines available. Therefore, rapid development of effective vaccines against SARS-CoV-2 are urgently needed. Here, we developed a pilot-scale production of PiCoVacc, a purified inactivated SARS-CoV-2 virus vaccine candidate, which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats, and nonhuman primates. These antibodies neutralized 10 representative SARS-CoV-2 strains, suggesting a possible broader neutralizing ability against other strains. Three immunizations using two different doses, 3 or 6 micrograms per dose, provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without observable antibody-dependent enhancement of infection. These data support the clinical development and testing of PiCoVacc for use in humans.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Betacoronavirus/isolation & purification , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dose-Response Relationship, Immunologic , Female , Immunogenicity, Vaccine , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Pilot Projects , Pneumonia, Viral/virology , Rats , Rats, Wistar , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vero Cells , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/immunology
20.
EBioMedicine ; 58: 102890, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-666030

ABSTRACT

BACKGROUND: The novel coronavirus (SARS-CoV-2) shares approximately 80% whole genome sequence identity and 66% spike (S) protein identity with that of SARS-CoV. The cross-neutralization between these viruses is currently not well-defined. METHODS: Here, by using the live SARS-CoV-2 virus infection assay as well as HIV-1 based pseudotyped-virus carrying the spike (S) gene of the SARS-CoV-2 (ppSARS-2) and SARS-CoV (ppSARS), we examined whether infections with SARS-CoV and SARS-CoV-2 can induce cross-neutralizing antibodies. FINDINGS: We confirmed that SARS-CoV-2 infects cells via angiotensin converting enzyme 2 (ACE2), the functional receptor for SARS-CoV, and we also found that the recombinant receptor binding domain (RBD) of the S protein of SARS-CoV effectively inhibits ppSARS-2 entry in Huh7.5 cells. However, convalescent sera from SARS-CoV and SARS-CoV-2 patients showed high neutralizing activity only against the homologous virus, with no or limited cross-neutralization activity against the other pseudotyped virus. Similar results were also observed in vaccination studies in mice. INTERPRETATION: Our study demonstrates that although both SARS-CoV and SARS-CoV-2 use ACE2 as a cellular receptor, the neutralization epitopes are not shared by these two closely-related viruses, highlighting challenges towards developing a universal vaccine against SARS-CoV related viruses. FUNDING: This work was supported by the National Key Research and Development Program of China, the National Major Project for Control and Prevention of Infectious Disease in China, and the One Belt and One Road Major Project for infectious diseases.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Cross Reactions , SARS Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity , Betacoronavirus/genetics , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Female , Humans , Mice , Mice, Inbred BALB C , SARS Virus/genetics , Sequence Homology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL