Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 12: 776933, 2021.
Article in English | MEDLINE | ID: covidwho-1581333

ABSTRACT

The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Clonal Selection, Antigen-Mediated/immunology , Germinal Center/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Antigens/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Immunologic , Germinal Center/metabolism , Humans , Immunization, Secondary , Models, Theoretical , Vaccination
2.
MAbs ; 13(1): 1978130, 2021.
Article in English | MEDLINE | ID: covidwho-1442969

ABSTRACT

Recent years have seen unparalleled development of microfluidic applications for antibody discovery in both academic and pharmaceutical research. Microfluidics can support native chain-paired library generation as well as direct screening of antibody secreting cells obtained by rodent immunization or from the human peripheral blood. While broad diversities of neutralizing antibodies against infectious diseases such as HIV, Ebola, or COVID-19 have been identified from convalescent individuals, microfluidics can expedite therapeutic antibody discovery for cancer or immunological disease indications. In this study, a commercially available microfluidic device, Cyto-Mine, was used for the rapid identification of natively paired antibodies from rodents or human donors screened for specific binding to recombinant antigens, for direct screening with cells expressing the target of interest, and, to our knowledge for the first time, for direct broad functional IgG antibody screening in droplets. The process time from cell preparation to confirmed recombinant antibodies was four weeks. Application of this or similar microfluidic devices and methodologies can accelerate and enhance pharmaceutical antibody hit discovery.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Immunoglobulin G/isolation & purification , Microfluidics/methods , Animals , Antibodies, Bacterial/immunology , Antibodies, Bacterial/isolation & purification , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Specificity , Antigens/immunology , Antigens, Neoplasm/immunology , Blood Preservation , COVID-19/immunology , Fluorescence Resonance Energy Transfer , Humans , Hybridomas/immunology , Immunomagnetic Separation , Lab-On-A-Chip Devices , Mice , Microfluidics/instrumentation , Muromonab-CD3/immunology , Plasma Cells , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Tetanus Toxoid/immunology , Vaccination
3.
Sci Rep ; 10(1): 18149, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-1387454

ABSTRACT

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Subject(s)
Antigens/immunology , Betacoronavirus/metabolism , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antigens/genetics , Antigens/metabolism , Aquifex , Bacteria/enzymology , Bacterial Proteins/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections , Ferritins/genetics , Helicobacter pylori/metabolism , Humans , Mice , Multienzyme Complexes/genetics , Neutralization Tests , Pandemics , Pneumonia, Viral , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Properties
4.
Biophys Chem ; 265: 106441, 2020 10.
Article in English | MEDLINE | ID: covidwho-1343142

ABSTRACT

The possibility of immobilizing a protein with antigenic properties on a solid support offers significant possibilities in the development of immunosensors and vaccine formulations. For both applications, the orientation of the antigen should ensure ready accessibility of the antibodies to the epitope. However, an experimental assessment of the orientational preferences necessarily proceeds through the preparation/isolation of the antigen, the immobilization on different surfaces and one or more biophysical characterization steps. To predict a priori whether favorable orientations can be achieved or not would allow one to select the most promising experimental routes, partly mitigating the time cost towards the final product. In this manuscript, we apply a simple computational model, based on united-residue modelling, to the prediction of the orientation of the receptor binding domain of the SARS-CoV-2 spike protein on surfaces commonly used in lateral-flow devices. These calculations can account for the experimental observation that direct immobilization on gold gives sufficient exposure of the epitope to obtain a response in immunochemical assays.


Subject(s)
Betacoronavirus/metabolism , Epitopes/chemistry , Models, Molecular , Spike Glycoprotein, Coronavirus/metabolism , Antigens/chemistry , Antigens/immunology , Antigens/metabolism , Epitopes/immunology , Molecular Docking Simulation , Protein Domains , SARS-CoV-2 , Silicon Dioxide/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Surface Properties
5.
Adv Mater ; 32(42): e2002940, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-743232

ABSTRACT

Recent years have seen enormous advances in nanovaccines for both prophylactic and therapeutic applications, but most of these technologies employ chemical or hybrid semi-biosynthetic production methods. Thus, production of nanovaccines has to date failed to exploit biology-only processes like complex sequential post-translational biochemical modifications and scalability, limiting the realization of the initial promise for offering major performance advantages and improved therapeutic outcomes over conventional vaccines. A Nano-B5 platform for in vivo production of fully protein-based, self-assembling, stable nanovaccines bearing diverse antigens including peptides and polysaccharides is presented here. Combined with the self-assembly capacities of pentamer domains from the bacterial AB5 toxin and unnatural trimer peptides, diverse nanovaccine structures can be produced in common Escherichia coli strains and in attenuated pathogenic strains. Notably, the chassis of these nanovaccines functions as an immunostimulant. After showing excellent lymph node targeting and immunoresponse elicitation and safety performance in both mouse and monkey models, the strong prophylactic effects of these nanovaccines against infection, as well as their efficient therapeutic effects against tumors are further demonstrated. Thus, the Nano-B5 platform can efficiently combine diverse modular components and antigen cargos to efficiently generate a potentially very large diversity of nanovaccine structures using many bacterial species.


Subject(s)
Nanoparticles , Proteins/chemistry , Proteins/immunology , Vaccination , Antigens/immunology , Proteins/metabolism
6.
Chem Biol Interact ; 344: 109497, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1312959

ABSTRACT

Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Exosomes/immunology , Plasma/immunology , Adaptive Immunity/immunology , Antibodies/immunology , Antigens/immunology , DNA/immunology , Humans , Immunization, Passive , RNA/immunology , SARS-CoV-2/immunology
7.
Chem Biol Interact ; 344: 109497, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1309180

ABSTRACT

Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Exosomes/immunology , Plasma/immunology , Adaptive Immunity/immunology , Antibodies/immunology , Antigens/immunology , DNA/immunology , Humans , Immunization, Passive , RNA/immunology , SARS-CoV-2/immunology
8.
J Immunol Methods ; 496: 113099, 2021 09.
Article in English | MEDLINE | ID: covidwho-1292808

ABSTRACT

Bispecific antibodies (BsAbs) are engineered to simultaneously bind two different antigens, and offer promising clinical outcomes for various diseases. The dual binding properties of BsAbs may enable superior efficacies and/or potencies compared to standard monoclonal antibodies (mAbs) or combination mAb therapies. Characterizing BsAb binding properties is critical during biotherapeutic development, where data is leveraged to predict efficacy and potency, assess critical quality attributes and improve antibody design. Traditional single-target, single-readout approaches (e.g., ELISA) have limited usefulness for interpreting complex bispecific binding, and double the benchwork. To address these deficiencies, we developed and implemented a new dual-target/readout binding assay that accurately dissects the affinities of both BsAb binding domains directly and simultaneously. This new assay uses AlphaPlex® technology, which eliminates traditional ELISA wash steps and can be miniaturized for automated workflows. The optimized BsAb AlphaPlex assay demonstrates 99-107% accuracy within a 50-150% linear range, and detected >50% binding degradation from photo- and thermal stress conditions. To the best of our knowledge, this is the first instance of a dual-target/readout BsAb AlphaPlex assay with GMP-suitable linear range, accuracy, specificity, and stability-indicating properties. As a highly customizable and efficient assay, BsAb AlphaPlex may be applicable to numerous bispecific formats and/or co-formulations against a variety of antigens beyond the clinical therapeutic space.


Subject(s)
Antibodies, Bispecific/immunology , Antibody Specificity , Antigens/immunology , CTLA-4 Antigen/immunology , Immunoassay , Programmed Cell Death 1 Receptor/immunology , Antibodies, Bispecific/metabolism , Antigen-Antibody Complex , Antigens/metabolism , Binding Sites, Antibody , Buffers , CTLA-4 Antigen/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes , Humans , Hydrogen-Ion Concentration , Kinetics , Predictive Value of Tests , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Reproducibility of Results
9.
Sci Rep ; 11(1): 6614, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1147848

ABSTRACT

There is a plethora of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) serological tests based either on nucleocapsid phosphoprotein (N), S1-subunit of spike glycoprotein (S1) or receptor binding domain (RBD). Although these single-antigen based tests demonstrate high clinical performance, there is growing evidence regarding their limitations in epidemiological serosurveys. To address this, we developed a Luminex-based multiplex immunoassay that detects total antibodies (IgG/IgM/IgA) against the N, S1 and RBD antigens and used it to compare antibody responses in 1225 blood donors across Greece. Seroprevalence based on single-antigen readouts was strongly influenced by both the antigen type and cut-off value and ranged widely [0.8% (95% CI 0.4-1.5%)-7.5% (95% CI 6.0-8.9%)]. A multi-antigen approach requiring partial agreement between RBD and N or S1 readouts (RBD&N|S1 rule) was less affected by cut-off selection, resulting in robust seroprevalence estimation [0.6% (95% CI 0.3-1.1%)-1.2% (95% CI 0.7-2.0%)] and accurate identification of seroconverted individuals.


Subject(s)
Antigens/immunology , COVID-19/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Antibodies, Viral/blood , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoassay , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Young Adult
11.
Cells ; 10(2)2021 01 27.
Article in English | MEDLINE | ID: covidwho-1055022

ABSTRACT

Monitoring antigen-specific T cell immunity relies on functional tests that require T cells and antigen presenting cells to be uncompromised. Drawing of blood, its storage and shipment from the clinical site to the test laboratory, and the subsequent isolation, cryopreservation and thawing of peripheral blood mononuclear cells (PBMCs) before the actual test is performed can introduce numerous variables that may jeopardize the results. Therefore, no T cell test is valid without assessing the functional fitness of the PBMC being utilized. This can only be accomplished through the inclusion of positive controls that actually evaluate the performance of the antigen-specific T cell and antigen presenting cell (APC) compartments. For Caucasians, CEF peptides have been commonly used to this extent. Moreover, CEF peptides only measure CD8 cell functionality. We introduce here universal CD8+ T cell positive controls without any racial bias, as well as positive controls for the CD4+ T cell and APC compartments. In summary, we offer new tools and strategies for the assessment of PBMC functional fitness required for reliable T cell immune monitoring.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Leukocytes, Mononuclear/immunology , Antigen-Presenting Cells/immunology , Antigens/immunology , Humans , Immunologic Tests/methods , Peptides/immunology
12.
Expert Rev Vaccines ; 19(11): 1023-1039, 2020 11.
Article in English | MEDLINE | ID: covidwho-948588

ABSTRACT

INTRODUCTION: Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED: C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION: However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.


Subject(s)
Adjuvants, Immunologic/administration & dosage , B-Lymphocytes/immunology , Vaccines/immunology , Animals , Antigens/immunology , Humans , Immunity, Humoral/immunology , Receptors, Antigen, B-Cell/immunology
13.
J Biophotonics ; 14(3): e202000338, 2021 03.
Article in English | MEDLINE | ID: covidwho-908749

ABSTRACT

The appearance of antibodies in blood is a critical signal to suggest the infection. A rapid and accurate detection method for the antibody is significant to the disease diagnosis, especially for the epidemic. To this end, a highly sensitive whispering-gallery-mode (WGM) optical testing kit is designed and fabricated for detecting the specific immunoglobulin antibodies. The key component of the kit is a silica self-assembled microsphere decorated with the nucleocapsid proteins (N-proteins) of the SARS-CoV-2 virus. After the N-protein antibody immunoglobulin G (N-IgG) and immunoglobulin M (N-IgM) solutions being injected into the kit, the WGM red-shifts due to the antigen-antibody reaction. The wavelength displacement rates are proportional to the concentrations of these two antibodies from 1 to 100 µg/mL. A good specificity of the kit is demonstrated by the nonspecific human immunoglobulin G (H-IgG) and immunoglobulin M (H-IgM).


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/diagnosis , Microspheres , Silicon Dioxide/chemistry , Antigens/immunology , Biosensing Techniques , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Epidemics , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Optics and Photonics , Phosphoproteins/immunology , Polymethyl Methacrylate/chemistry , SARS-CoV-2 , Silanes
14.
Front Immunol ; 11: 576255, 2020.
Article in English | MEDLINE | ID: covidwho-886166

ABSTRACT

In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.


Subject(s)
Antibodies, Blocking/therapeutic use , Hypersensitivity/therapy , Immunotherapy/methods , Single-Domain Antibodies/therapeutic use , Antibodies, Blocking/immunology , Antigens/immunology , Epitopes/immunology , Humans , Immunoglobulin E/immunology , Single-Domain Antibodies/immunology
15.
Anal Chem ; 92(16): 11305-11309, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-733550

ABSTRACT

The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/diagnosis , Immunoassay/methods , Nucleocapsid/immunology , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Antibodies, Viral/blood , Antigens/immunology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
16.
Med Hypotheses ; 144: 110049, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-642368

ABSTRACT

Of the seven coronaviruses associated with disease in humans, SARS-CoV, MERS-CoV and SARS-CoV-2 cause considerable mortality but also share significant sequence homology, and potentially antigenic epitopes capable of inducing an immune response. The degree of similarity is such that perhaps prior exposure to one virus could confer partial immunity to another. Indeed, data suggests a considerable amount of cross-reactivity and recognition by the hosts immune response between different coronavirus infections. While the ongoing COVID-19 outbreak rapidly overwhelmed medical facilities of particularly Europe and North America, accounting for 78% of global deaths, only 8% of deaths have occurred in Asia where the outbreak originated. Interestingly, Asia and the Middle East have previously experienced multiple rounds of coronavirus infections, perhaps suggesting buildup of acquired immunity to the causative SARS-CoV-2 that underlies COVID-19. This article hypothesizes that a causative factor underlying such low morbidity in these regions is perhaps (at least in part) due to acquired immunity from multiple rounds of coronavirus infections and discusses the mechanisms and recent evidence to support such assertions. Further investigations of such phenomenon would allow us to examine strategies to confer protective immunity, perhaps aiding vaccine development.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Cross Protection , SARS-CoV-2 , Adaptive Immunity , Antigens/immunology , Apoptosis , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Cross Reactions , Disease Outbreaks , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Humans , Immune System , Immunity , Middle East Respiratory Syndrome Coronavirus , SARS Virus , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...