Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
3.
Obstet Gynecol ; 140(1): 74-76, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1908985

ABSTRACT

Treatment with monoclonal antibodies has been shown to significantly reduce the risk of hospitalization and disease progression among high-risk patients with coronavirus disease 2019 (COVID-19). Pregnant individuals were excluded from the original trials. In this single-center retrospective cohort study, we evaluated whether monoclonal antibody treatment in pregnant individuals is associated with decreased risk of hospitalization. Outcomes of patients who received the treatment were compared with those who were eligible but did not receive the treatment. Analyses were stratified by vaccination status. Unvaccinated pregnant patients with mild or moderate COVID-19 who received outpatient monoclonal antibodies were less likely to be admitted to the hospital (4.2% vs 15.7%, odds ratio 0.24, 95% CI 0.07-0.74), whereas among vaccinated patients, the treatment was not associated with a lower rate of hospitalization (2.3% vs 0%, P=.99).


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal , Female , Humans , Outpatients , Pregnancy , Retrospective Studies
5.
Cochrane Database Syst Rev ; 6: CD014945, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1898513

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab.   Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/prevention & control , Humans , Middle Aged , SARS-CoV-2
7.
Immunotherapy ; 14(12): 915-925, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1892545

ABSTRACT

Patients with cancer have a higher risk of severe COVID-19, and expert consensus advocates for COVID-19 vaccination in this population. Some cases of autoimmune hepatitis have been described after the administration of COVID-19 vaccine in the people in apparently good health. Immune checkpoint inhibitors (ICIs) are responsible for a wide spectrum of immune-related adverse events (irAEs). This article reports a case of hepatitis and colitis in a 52-year-old woman who was undergoing immunotherapy and was HBV positive 10 days after receiving the first Pfizer-BioNTech COVID-19 vaccine dose. Because both ICIs and the COVID-19 vaccines stimulate the immune response, the authors hypothesize that these vaccines may increase the incidence of irAEs during ICI treatment. There is a complex interplay between the immune-mediated reaction triggered by the vaccination and PD-L1 co-administration.


Patients with cancer have a higher risk of severe COVID-19, and expert consensus advocates for COVID-19 vaccination in this population. Some reports have described autoimmune hepatitis after the administration of COVID-19 vaccine. It is difficult, however, to establish a causal relationship between COVID-19 vaccination and autoimmune hepatitis. This article reports a case of hepatitis and colitis in a 52-year-old woman with lung cancer who was undergoing immunotherapy and was was found to be HBV positive 10 days after her first Pfizer-BioNTech COVID-19 vaccine dose. Because both immunotherapy and COVID-19 vaccines stimulate the immune response, the authors hypothesize that these vaccines may increase the incidence of immune-related side effects.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 Vaccines , COVID-19 , Hepatitis , Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , BNT162 Vaccine , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Female , Hepatitis/etiology , Humans , Immunologic Factors/therapeutic use , Immunotherapy/adverse effects , Middle Aged , SARS-CoV-2 , Vaccination/adverse effects
9.
Mol Biol Rep ; 49(5): 4061-4068, 2022 May.
Article in English | MEDLINE | ID: covidwho-1877913

ABSTRACT

The omicron variant (B.529) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2021, caused panic worldwide due to its contagiousness and multiple mutations in the spike protein compared to the Delta variant (B.617.2). There is currently no specific antiviral available to treat Coronavirus disease 2019 (COVID-19). However, studies on neutralizing monoclonal antibodies (mAb) developed to fight COVID-19 are growing and gaining traction. REGN-COV2 (Regeneron or imdevimab-casirivimab combination), which has been shown in recent studies to be less affected by Omicron's RBD (receptor binding domain) mutations among other mAb cocktails, plays an important role in adjuvant therapy against COVID-19. On the other hand, it is known that melatonin, which has antioxidant and immunomodulatory effects, can prevent a possible cytokine storm, and other severe symptoms that may develop in the event of viral invasion. Along with all these findings, we believe it is crucial to evaluate the use of melatonin with REGN-COV2, a cocktail of mAbs, as an adjuvant in the treatment and prevention of COVID-19, particularly in immunocompromised and elderly patients.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Melatonin , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/drug therapy , Drug Combinations , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , SARS-CoV-2
10.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1875643

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as "possible" or "probable" cases but not "proven". Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.


Subject(s)
Antineoplastic Agents, Immunological , Aspergillosis , Invasive Fungal Infections , Mycoses , Antibodies, Monoclonal/therapeutic use , Antifungal Agents/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Humans , Invasive Fungal Infections/drug therapy , Mycoses/drug therapy
11.
Front Immunol ; 13: 868020, 2022.
Article in English | MEDLINE | ID: covidwho-1834408

ABSTRACT

Objectives: Comparative analysis between different monoclonal antibodies (mAbs) against SARS-CoV-2 are lacking. We present an emulation trial from observational data to compare effectiveness of Bamlanivimab/Etesevimab (BAM/ETE) and Casirivimab/Imdevimab (CAS/IMD) in outpatients with early mild-to-moderate COVID-19 in a real-world scenario of variants of concern (VoCs) from Alpha to Delta. Methods: Allocation to treatment was subject to mAbs availability, and the measured factors were not used to determine which combination to use. Patients were followed through day 30. Viral load was measured by cycle threshold (CT) on D1 (baseline) and D7.Primary outcome was time to COVID-19-related hospitalization or death from any cause over days 0-30. Weighted pooled logistic regression and marginal structural Cox model by inverse probability weights were used to compare BAM/ETE vs. CAS/IMD. ANCOVA was used to compare mean D7 CT values by intervention. Models were adjusted for calendar month, MASS score and VoCs. We evaluated effect measure modification by VoCs, vaccination, D1 CT levels and enrolment period. Results: COVID19-related hospitalization or death from any cause occurred in 15 of 237 patients in the BAM/ETE group (6.3%) and in 4 of 196 patients in the CAS/IMD group (2.0%) (relative risk reduction [1 minus the relative risk] 72%; p=0.024). Subset analysis carried no evidence that the effect of the intervention was different across stratification factors. There was no evidence in viral load reduction from baseline through day 7 across the two groups (+0.17, 95% -1.41;+1.74, p=0.83). Among patients who experienced primary outcome, none showed a negative RT-PCR test in nasopharyngeal swab (p=0.009) and 82.4% showed still high viral load (p<0.001) on D7. Conclusions: In a pre-Omicron epidemiologic scenario, CAS/IMD reduced risk of clinical progression of COVID-19 compared to BAM/ETE. This effect was not associated with a concomitant difference in virological response.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/drug therapy , Humans , Observation , SARS-CoV-2
12.
J Infect Chemother ; 28(7): 991-994, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1828874

ABSTRACT

Management of COVID-19 patients with humoral immunodeficiency is challenging. We describe a woman with COVID-19 with multiple relapses due to anti-CD20 monoclonal antibody treatment. She was successfully treated with casirivimab/imdevimab and confirmed to have neutralizing antibodies. This case suggests that monoclonal antibodies have therapeutic and prophylactic value in patients with humoral immunodeficiency.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , COVID-19/drug therapy , Female , Humans , SARS-CoV-2
13.
Antiviral Res ; 201: 105297, 2022 05.
Article in English | MEDLINE | ID: covidwho-1814106

ABSTRACT

Monoclonal antibody therapy is a promising option for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a cocktail of antibodies (REGN-COV) has been administered to infected patients with a favorable outcome. However, it is necessary to continue generating novel sets of monoclonal antibodies with neutralizing activity because viral variants can emerge that show resistance to the currently utilized antibodies. Here, we isolated a new cocktail of antibodies, EV053273 and EV053286, from peripheral blood mononuclear cells derived from convalescent patients infected with wild-type SARS-CoV-2. EV053273 exerted potent antiviral activity against the Wuhan wild-type virus as well as the Alpha and Delta variants in vitro, whereas the antiviral activity of EV053286 was moderate, but it had a wide-range of suppressive activity on the wild-type virus as well as the Alpha, Beta, Delta, Kappa, Omicron BA.1, and BA.2 variants. With the combined use of EV053273 and EV053286, we observed similar inhibitory effects on viral replication as with REGN-COV in vitro. We further assessed their activity in vivo by using a mouse model infected with a recently established viral strain with adopted infectious activity in mice. Independent experiments revealed that the combined use of EV053273 and EV053286 or the single use of each monoclonal antibody efficiently blocked infection in vivo. Together with data showing that these two monoclonal antibodies could neutralize REGN-COV escape variants and the Omicron variant, our findings suggest that the EV053273 and EV053286 monoclonal antibody cocktail is a novel clinically applicable therapeutic candidate for SARS-CoV-2 infection.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Combinations , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
Monoclon Antib Immunodiagn Immunother ; 41(2): 101-109, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1806236

ABSTRACT

Ferrets (Mustela putorius furo) have been used as small animal models to investigate severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infections. Pathological analyses of these tissue samples, including those of the lung, are, therefore, essential to understand the pathogenesis of SARS-CoVs and evaluate the action of therapeutic monoclonal antibodies (mAbs) against this disease. However, mAbs that recognize ferret-derived proteins and distinguish between specific cell types, such as lung epithelial cells, are limited. Podoplanin (PDPN) has been identified as an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-ferret PDPN (ferPDPN) mAb PMab-292 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. PMab-292 recognized ferPDPN-overexpressed Chinese hamster ovary-K1 (CHO/ferPDPN) cells by flow cytometry and Western blotting. The kinetic analysis using flow cytometry showed that the KD of PMab-292 for CHO/ferPDPN was 3.4 × 10-8 M. Furthermore, PMab-292 detected lung type I alveolar epithelial cells, lymphatic endothelial cells, and glomerular/Bowman's capsule in the kidney using immunohistochemistry. Hence, these results propose the usefulness of PMab-292 in analyzing ferret-derived tissues for SARS-CoV-2 research.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , SARS Virus , Animals , Antibodies, Monoclonal , Antibody Specificity , CHO Cells , Cricetinae , Cricetulus , Endothelial Cells , Epitope Mapping/methods , Ferrets , Kinetics , Membrane Glycoproteins/genetics , Mice , SARS-CoV-2 , Transcription Factors
15.
Dtsch Med Wochenschr ; 147(9): 558-563, 2022 04.
Article in German | MEDLINE | ID: covidwho-1805718

ABSTRACT

BACKGROUND: Neutralizing monoclonal antibodies (mAB) against SARS-CoV-2 reduce the severity of COVID-19 in patients with risk factors. Early administration at the onset of infection is critical for their efficacy. At this early stage of the disease, family physicians are often the first help for patients and thus central to the further course of the disease. To date, however, mAB have only rarely been used in general practice. The purpose of this case series is to demonstrate that the administration of mAB is safely feasible in the primary care setting. CASE REPORT: We report seven cases at risk for severe COVID-19. Two of them were not vaccinated, five had drug induced immunosuppression, and one patient was at high risk because of trisomy-21. All patients were successfully treated with the mAB Sotrovimab in a GP's practice in January/ February 2022. Two patients were treated making a house call. Based on the cases, clinical information and a hands-on handling of this therapy are described. CONCLUSIONS: Neutralizing mAB can be administered safely and with manageable effort in primary care setting and can help prevent a severe course and hospitalization in patients with COVID-19 and risk factors.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , General Practice , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
17.
JAMA Netw Open ; 5(4): e228632, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801990

ABSTRACT

Importance: The COVID-19 pandemic has led to more than 900 000 deaths in the US and continues to disrupt lives even as effective vaccines are available. Objective: To estimate the health outcomes and net cost of implementing postexposure prophylaxis (PEP) with monoclonal antibodies (mAbs) against household exposure to COVID-19. Design, Setting, and Participants: This study is a decision analytical model of results from a randomized clinical trial of casirivimab with imdevimab administered as subcutaneous injections to unvaccinated, SARS-CoV-2-negative household contacts of people with confirmed COVID-19 with complementary data on household demographic structure, vaccine coverage, and confirmed COVID-19 case counts. The study used US data from May 2021 for a simulated population of US individuals of all ages within low-transmission or high-transmission scenarios. Exposures: Age, sex, race, ethnicity, and COVID-19 vaccination status. Main Outcome or Measures: Symptomatic infection, hospitalization, death, and net payer cost of monoclonal antibody PEP for COVID-19. Results: In a month of transmission intensity similar to that of May 2021, a mAb PEP program reaching 50% of exposed, unvaccinated household members aged 50 years and older was estimated to avert 1820 symptomatic infections (95% uncertainty interval [UI], 1220-2454 symptomatic infections), 528 hospitalizations (95% UI, 354-724 hospitalizations), and 84 deaths (95% UI, 55-116 deaths) in a low-transmission scenario and 4834 symptomatic infections (95% UI, 3375-6257 symptomatic infections), 1404 hospitalizations (95% UI, 974-1827 hospitalizations), and 223 deaths (95% UI, 152-299 deaths) in a high-transmission scenario. Without mAb PEP, the estimated cost of hospitalizations due to COVID-19 infections from household exposure in the lower transmission scenario was $149 million (95% UI, $115-$196 million), whereas the estimated hospitalization cost in the higher transmission scenario was $400 million (95% UI, $312-$508 million). In the lower transmission scenario, mAb PEP administered to 50% of eligible contacts aged 80 years and older was estimated to have 82% probability of saving costs, but was not associated with cost savings at age thresholds of 50 years and older or 20 years and older. In contrast, in the high-transmission scenario, mAb PEP administered to 50% of eligible household contacts had estimated cost savings in 100% of simulations at the 80-year age threshold, 96% of simulations at the 50-year threshold, and 2% of simulations at the 20-year thresholds. Conclusions and Relevance: In this modeling study of a simulated US population, a mAb PEP for COVID-19 program was estimated to improve health outcomes and reduce costs. In the setting of a susceptible variant of SARS-CoV-2, health system and public health actors would have an opportunity to improve health and reduce net payer costs through COVID-19 PEP with mAbs.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , Outcome Assessment, Health Care , Pandemics/prevention & control , SARS-CoV-2
18.
Transpl Int ; 35: 10109, 2022.
Article in English | MEDLINE | ID: covidwho-1792858

ABSTRACT

Background: Antiviral drugs have shown little impact in patient infected with acute respiratory coronavirus 2 (SARS-CoV-2). Especially for immunocompromised persons positive for SARS-CoV-2, novel treatments are warranted. Recently, the U.S. FDA has granted an emergency use authorization (EUA) to two monoclonal antibodies (mAb) targeting the viral spike protein: bamlanivimab and casivirimab and imdevimab. As per the EUA, all SARS-CoV-2 positive organ transplant recipients can receive mAb treatment. Patients and methods: We queried our center's transplant registry to identify SARS-CoV-2 infected recipients treated with single doses of either Bamlanivimab or casivirimab/imdevimab up to May 31, 2021. We analyzed clinical outcomes, renal function and virus-specific antibodies. The co-primary endpoints were hospitalization due to COVID-19 and SARS-CoV-2 RT-PCR negativity. Results: Thirteen patients at a median interval of 55 (IQR, 26-110) months from transplant were treated: 8 with bamlanivimab and 5 with casivirimab/imdevimab. In all, 4/13 (31%) patients were hospitalized at some time, while 11/13 (85%) achieved PCR negativity. 2/4 hospitalized patients received mAb as rescue treatment. Overall mortality was 23%, with one death attributable to transplant-associated lymphoma. All six patients infected with the B 1.1.7 variant were alive at last contact. Conclusion: mAb treatment appears effective when administered early to SARS-CoV-2-infected transplant recipients.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Humans , Kidney/physiology , Pancreas , SARS-CoV-2 , Transplant Recipients
20.
JAMA Netw Open ; 5(4): e226920, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1782544

ABSTRACT

Importance: Monoclonal antibody (mAb) treatment decreases hospitalization and death in high-risk outpatients with mild to moderate COVID-19; however, only intravenous administration has been evaluated in randomized clinical trials of treatment. Subcutaneous administration may expand outpatient treatment capacity and qualified staff available to administer treatment, but the association with patient outcomes is understudied. Objectives: To evaluate whether subcutaneous casirivimab and imdevimab treatment is associated with reduced 28-day hospitalization and death compared with nontreatment among mAb-eligible patients and whether subcutaneous casirivimab and imdevimab treatment is clinically and statistically similar to intravenous casirivimab and imdevimab treatment. Design, Setting, and Participants: This prospective cohort study evaluated high-risk outpatients in a learning health system in the US with mild to moderate COVID-19 symptoms from July 14 to October 26, 2021, who were eligible for mAb treatment under emergency use authorization. A nontreated control group of eligible patients was also studied. Exposures: Subcutaneous injection or intravenous administration of the combined single dose of 600 mg of casirivimab and 600 mg of imdevimab. Main Outcomes and Measures: The primary outcome was the 28-day adjusted risk ratio or adjusted risk difference for hospitalization or death. Secondary outcomes included 28-day adjusted risk ratios and differences in hospitalization, death, a composite end point of emergency department admission and hospitalization, and rates of adverse events. Among 1959 matched adults with mild to moderate COVID-19, 969 patients (mean [SD] age, 53.8 [16.7] years; 547 women [56.4%]) who received casirivimab and imdevimab subcutaneously had a 28-day rate of hospitalization or death of 3.4% (22 of 653 patients) compared with 7.0% (92 of 1306 patients) in nontreated controls (risk ratio, 0.48; 95% CI, 0.30-0.80; P = .002). Among 2185 patients treated with subcutaneous (n = 969) or intravenous (n = 1216; mean [SD] age, 54.3 [16.6] years; 672 women [54.4%]) casirivimab and imdevimab, the 28-day rate of hospitalization or death was 2.8% vs 1.7%, which resulted in an adjusted risk difference of 1.5% (95% CI, -0.6% to 3.5%; P = .16). Among all infusion patients, there was no difference in intensive care unit admission (adjusted risk difference, 0.7%; 95% CI, -3.5% to 5.0%) or need for mechanical ventilation (adjusted risk difference, 0.2%; 95% CI, -5.8% to 5.5%). Conclusions and Relevance: In this cohort study of high-risk outpatients with mild to moderate COVID-19 symptoms, subcutaneously administered casirivimab and imdevimab was associated with reduced hospitalization and death when compared with no treatment. These results provide preliminary evidence of potential expanded use of subcutaneous mAb treatment, particularly in areas that are facing treatment capacity and/or staffing shortages.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Adult , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , COVID-19/drug therapy , Cohort Studies , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL