Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1715565

ABSTRACT

For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7-18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.


Subject(s)
Antineoplastic Agents , Chalcones , Cyclooxygenase 2 Inhibitors , Neoplasm Proteins , Neoplasms , Protein Kinase Inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Structure , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
2.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1592575

ABSTRACT

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity Relationship
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1534087

ABSTRACT

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Subject(s)
Antineoplastic Agents/pharmacology , Apolipoproteins E/genetics , Bexarotene/pharmacology , Leukocytes/drug effects , Nicotinic Acids/pharmacology , Retinoid X Receptor alpha/agonists , Animals , Antineoplastic Agents/chemical synthesis , Apolipoproteins E/metabolism , Bexarotene/analogs & derivatives , Bexarotene/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans , Leukocytes/metabolism , Leukocytes/pathology , Nicotinic Acids/chemical synthesis , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Structure-Activity Relationship
4.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1526113

ABSTRACT

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity Relationship
5.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524087

ABSTRACT

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Galactose/analogs & derivatives , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacokinetics , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Galactose/chemistry , Galactose/pharmacokinetics , Galactose/pharmacology , Gram-Positive Bacteria/drug effects , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , Static Electricity , Thermodynamics
6.
Molecules ; 26(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1512508

ABSTRACT

As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide-alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the ß-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Coumarins/chemistry , Harmine/chemical synthesis , Harmine/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Harmine/analogs & derivatives , Humans , Molecular Structure
7.
Molecules ; 26(21)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1512506

ABSTRACT

Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 µM.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Dipeptides/chemistry , Silver/chemistry , Anti-Infective Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Chemical Phenomena , Chemistry Techniques, Synthetic , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Stability , Humans , Molecular Conformation , Molecular Dynamics Simulation , Spectrum Analysis , Structure-Activity Relationship , Thermogravimetry
8.
Inorg Chem ; 59(23): 17109-17122, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-1387106

ABSTRACT

Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 µM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 µM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/pharmacology , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , SARS-CoV-2/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Chromones/chemical synthesis , Chromones/metabolism , Chromones/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , DNA/metabolism , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/metabolism , Intercalating Agents/pharmacology , Ligands , Molecular Docking Simulation , Palladium/chemistry , Protein Binding , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/metabolism , Thiosemicarbazones/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Molecules ; 26(13)2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1295887

ABSTRACT

A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2'-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.


Subject(s)
Acetylene/chemistry , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Indoles/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , SARS-CoV-2/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kallikreins/antagonists & inhibitors , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects
10.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1111592

ABSTRACT

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Ketones/pharmacology , Proteasome Inhibitors/pharmacology , SARS-CoV-2/drug effects , Amides/chemical synthesis , Amides/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Calpain/chemistry , Calpain/metabolism , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Screening Assays, Antitumor , Humans , Ketones/chemical synthesis , Ketones/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Protein Binding , Structure-Activity Relationship
11.
Med Chem ; 16(3): 368-384, 2020.
Article in English | MEDLINE | ID: covidwho-71681

ABSTRACT

BACKGROUND: Nucleoside analogues are well-known antitumor, antiviral, and chemotherapeutic agents. Alterations on both their sugar and the heterocyclic parts may lead to significant changes in the spectrum of their biological activity and the degree of selective toxicity, as well as in their physicochemical properties. METHODS: C5-arylalkynyl-ß-D-ribofuranonucleosides 3-6, 3΄-deoxy 12-15, 3΄-deoxy-3΄-C-methyl- ß-D-ribofurananucleosides 18-21 and 2΄-deoxy-ß-D-ribofuranonucleosides 23-26 of uracil, were synthesized using a one-step Sonogashira reaction under microwave irradiation and subsequent deprotection. RESULTS: All newly synthesized nucleosides were tested for their antitumor or antiviral activity. Moderate cytostatic activity against cervix carcinoma (HeLa), murine leukemia (L1210) and human lymphocyte (CEM) tumor cell lines was displayed by the protected 3΄-deoxy derivatives 12b,12c,12d, and the 3΄-deoxy-3΄-methyl 18a,18b,18c. The antiviral evaluation revealed appreciable activity against Coxsackie virus B4, Respiratory syncytial virus, Yellow Fever Virus and Human Coronavirus (229E) for the 3΄-deoxy compounds 12b,14, and the 3΄-deoxy-3΄-methyl 18a,18c,18d, accompanied by low cytotoxicity. CONCLUSION: This report describes the total and facile synthesis of modified furanononucleosides of uracil, with alterations on both the sugar and the heterocyclic portions. Compounds 12b,14 and 18a,c,d showed noticeable antiviral activity against a series of RNA viruses and merit further biological and structural optimization investigations.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Drug Design , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , HeLa Cells , Humans , Mice , Pyrimidine Nucleosides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL