Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nutrients ; 14(7)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1834852

ABSTRACT

Patients affected by coronavirus disease 2019 (COVID-19) demonstrate a range of hemostasis dysfunctions, such as coagulation dysfunction and changes in blood platelet function, this being a major cause of death. These complications may also be associated with oxidative stress. Recently, various papers, including some reviews, have suggested that the use of dietary bioactive compounds, including phenolic compounds, may play a significant role in the treatment of COVID-19. However, while some phenolic compounds, such as curcumin, resveratrol, myricetin and scutellarian, have been found to have antiviral effects against COVID-19, recommendations regarding the use of such compounds to prevent or reduce the risk of CVDs during COVID-19 infection remain tentative. The present mini-review examines the antioxidant, anti-platelet and anticoagulant and antiviral activities of selected phenolic compounds and the possible implications for their use in treating CVDs associated with COVID-19. This review also examines whether these phenolic compounds can be promising agents in the modulation of hemostasis and CVDs during COVID-19. While their properties have been well documented in various in vitro and in vivo studies, particularly their positive role in the prophylaxis and treatment of CVDs, less is known regarding their prophylactic potential against CVDs during COVID-19, and no credible evidence exists for their efficiency in humans or animals. In such cases, no in vitro or in vivo studies are available. Therefore, it cannot be unequivocally stated whether treatment with these phenolic compounds offers benefits against CVDs in patients with COVID-19.


Subject(s)
COVID-19 , Cardiovascular Diseases , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Hemostasis , Humans , Phenols/pharmacology , Phenols/therapeutic use
2.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1748423

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
3.
Oxid Med Cell Longev ; 2022: 5589089, 2022.
Article in English | MEDLINE | ID: covidwho-1736165

ABSTRACT

The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.


Subject(s)
COVID-19/immunology , Oxidative Stress/immunology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Humans , Immunity, Innate , Oxidative Stress/drug effects , Reactive Nitrogen Species/immunology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , SARS-CoV-2/pathogenicity
4.
Cell Mol Life Sci ; 79(3): 143, 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1701908

ABSTRACT

Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin's ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.


Subject(s)
Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Melatonin/therapeutic use , SARS-CoV-2/drug effects , COVID-19/virology , Humans
5.
Eur J Med Chem ; 232: 114175, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1664879

ABSTRACT

oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.


Subject(s)
Antioxidants , COVID-19 , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , COVID-19/drug therapy , Humans , SARS-CoV-2 , Vitamins/pharmacology , Vitamins/therapeutic use
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1662665

ABSTRACT

Endometriosis, an estrogen-dependent chronic gynecological disease, is characterized by a systemic inflammation that affects circulating red blood cells (RBC), by reducing anti-oxidant defenses. The aim of this study was to investigate the potential beneficial effects of licorice intake to protect RBCs from dapsone hydroxylamine (DDS-NHOH), a harmful metabolite of dapsone, commonly used in the treatment of many diseases. A control group (CG, n = 12) and a patient group (PG, n = 18) were treated with licorice extract (25 mg/day), for a week. Blood samples before (T0) and after (T1) treatment were analyzed for: i) band 3 tyrosine phosphorylation and high molecular weight aggregates; and ii) glutathionylation and carbonic anhydrase activity, in the presence or absence of adjunctive oxidative stress induced by DDS-NHOH. Results were correlated with plasma glycyrrhetinic acid (GA) concentrations, measured by HPLC-MS. Results showed that licorice intake decreased the level of DDS-NHOH-related oxidative alterations in RBCs, and the reduction was directly correlated with plasma GA concentration. In conclusion, in PG, the inability to counteract oxidative stress is a serious concern in the evaluation of therapeutic approaches. GA, by protecting RBC from oxidative assault, as in dapsone therapy, might be considered as a new potential tool for preventing further switching into severe endometriosis.


Subject(s)
Anti-Infective Agents/adverse effects , Dapsone/adverse effects , Endometriosis/chemically induced , Glycyrrhiza , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Adult , Antioxidants/therapeutic use , Endometriosis/prevention & control , Erythrocytes/drug effects , Female , Glycyrrhiza/chemistry , Humans , Oxidative Stress/drug effects , Young Adult
7.
Nutrients ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625635

ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.


Subject(s)
Antioxidants/therapeutic use , COVID-19/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/prevention & control , Oxidative Stress/drug effects , Humans , Patient Acuity , SARS-CoV-2
8.
9.
Inflammopharmacology ; 29(5): 1347-1355, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1557643

ABSTRACT

The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/therapy , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/therapy , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disease Management , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Oxidative Stress/physiology
10.
Diabetes Metab Syndr ; 15(6): 102324, 2021.
Article in English | MEDLINE | ID: covidwho-1555992

ABSTRACT

BACKGROUND AND AIMS: Vitamin C has been used as an anti-oxidant in various diseases including viral illnesses like coronavirus disease (COVID-19). METHODS: Meta-analysis of randomized controlled trials (RCT) investigating the role of vitamin C supplementation in COVID-19 was carried out. RESULTS: Total 6 RCTs including n = 572 patients were included. Vitamin C treatment didn't reduce mortality (RR 0.73, 95% CI 0.42 to 1.27; I2 = 0%; P = 0.27), ICU length of stay [SMD 0.29, 95% CI -0.05 to 0.63; I2 = 0%; P = 0.09), hospital length of stay (SMD -0.23, 95% CI -1.04 to 0.58; I2 = 92%; P = 0.57) and need for invasive mechanical ventilation (Risk Ratio 0.93, 95% CI 0.61 to 1.44; I2 = 0%; P = 0.76). Further sub-group analysis based on severity of illness (severe vs. non-severe), route of administration (IV vs. oral) and dose (high vs. low) failed to show any observable benefits. CONCLUSION: No significant benefit noted with vitamin C administration in COVID-19. Well-designed RCTs with standardized control group needed on this aspect.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , COVID-19/drug therapy , COVID-19/mortality , Dietary Supplements , Humans , Length of Stay , Randomized Controlled Trials as Topic
11.
Carbohydr Polym ; 285: 118971, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1549670

ABSTRACT

Ligusticum chuanxiong, the dried rhizome of Ligusticum chuanxiong Hort, has been widely applied in traditional Chinese medicine for treating plague, and it has appeared frequently in the prescriptions against COVID-19 lately. Ligusticum chuanxiong polysaccharide (LCPs) is one of the effective substances, which has various activities, such as, anti-oxidation, promoting immunity, anti-tumor, and anti-bacteria. The purified fractions of LCPs are considered to be pectic polysaccharides, which are mainly composed of GalA, Gal, Ara and Rha, and are generally linked by α-1,4-d-GalpA, α-1,2-l-Rhap, α-1,5-l-Araf, ß-1,3-d-Galp and ß-1,4-d-Galp, etc. The pectic polysaccharide shows an anti-infective inflammatory activity, which is related to antiviral infection of Ligusticum chuanxiong. In this article, the isolation, purification, structural features, and biological activities of LCPs in recent years are reviewed, and the potential of LCPs against viral infection as well as questions that need future research are discussed.


Subject(s)
COVID-19/drug therapy , Ligusticum/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Carbohydrate Conformation , Carbohydrate Sequence , Drugs, Chinese Herbal , Humans , Polysaccharides/isolation & purification , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
12.
Nutrients ; 13(12)2021 Nov 28.
Article in English | MEDLINE | ID: covidwho-1542691

ABSTRACT

This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.


Subject(s)
Antioxidants/therapeutic use , Athletes , Dietary Supplements , Exercise/immunology , Oxidative Stress , Physical Endurance , COVID-19/epidemiology , COVID-19/immunology , Humans , Inflammation/epidemiology , Inflammation/immunology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Physical Endurance/drug effects , Physical Endurance/immunology , SARS-CoV-2/immunology , Sports Nutritional Sciences
13.
Front Endocrinol (Lausanne) ; 12: 736724, 2021.
Article in English | MEDLINE | ID: covidwho-1533632

ABSTRACT

Background: Obesity has been reported to be an important contributing factor for precocious puberty, especially in girls. The effect of green tea polyphenols on weight reduction in adult population has been shown, but few related studies have been conducted in children. This study was performed to examine the effectiveness and safety of decaffeinated green tea polyphenols (DGTP) on ameliorating obesity and early sexual development in girls with obesity. Design: This is a double-blinded randomized controlled trial. Girls with obesity aged 6-10 years old were randomly assigned to receive 400 mg/day DGTP or isodose placebo orally for 12 weeks. During this period, all participants received the same instruction on diet and exercise from trained dietitians. Anthropometric measurements, secondary sexual characteristics, B-scan ultrasonography of uterus, ovaries and breast tissues, and related biochemical parameters were examined and assessed pre- and post-treatment. Results: Between August 2018 and January 2020, 62 girls with obesity (DGTP group n = 31, control group n = 31) completed the intervention and were included in analysis. After the intervention, body mass index, waist circumference, and waist-to-hip ratio significantly decreased in both groups, but the percentage of body fat (PBF), serum uric acid (UA), and the volumes of ovaries decreased significantly only within the DGTP group. After controlling confounders, DGTP showed a significantly decreased effect on the change of PBF (ß = 2.932, 95% CI: 0.214 to 5.650), serum UA (ß = 52.601, 95% CI: 2.520 to 102.681), and ovarian volumes (right: ß = 1.881, 95% CI: 0.062 to 3.699, left: ß = 0.971, 95% CI: 0.019 to 1.923) in girls with obesity. No side effect was reported in both groups during the whole period. Conclusion: DGTP have shown beneficial effects of ameliorated obesity and postponed early sexual development in girls with obesity without any adverse effects. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03628937], identifier [NCT03628937].


Subject(s)
Adipose Tissue/drug effects , Antioxidants/therapeutic use , Pediatric Obesity/diagnostic imaging , Polyphenols/therapeutic use , Puberty, Precocious/drug therapy , Tea , Antioxidants/administration & dosage , Child , Double-Blind Method , Female , Humans , Polyphenols/administration & dosage , Puberty, Precocious/diagnostic imaging , Treatment Outcome , Waist Circumference/physiology
14.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1495800

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
15.
Zh Nevrol Psikhiatr Im S S Korsakova ; 121(9): 145-151, 2021.
Article in Russian | MEDLINE | ID: covidwho-1485582

ABSTRACT

The aim of our study was to consider features of pathogenesis, diagnosis and therapy of traumatic brain injury (TBI) from the viewpoint of neurologist. The mechanisms of emerging injury of the central nervous system, including neuro-inflammation and oxidative stress in patients with TBI, and correlations between clinical manifestations and severity of TBI are discussed. Special attention is paid to the description of certain TBI consequences, e.g. structural drug-resistant epilepsy and post-traumatic stress disorder. We provide evidence for difficulties and lesser availability of rehabilitation programs to patients with TBI during COVID-19 pandemics. One should mention a need for administration of Mexidol as the antioxidant/antihypoxant drug into complex therapy of TBI in such patients. In the period of COVID-19 pandemics, the role of neurologist in management of TBI patients still increases, especially, at the outpatient treatment stage, and when carrying out therapy and medical rehabilitation programs.


Subject(s)
Brain Injuries, Traumatic , COVID-19 , Stress Disorders, Post-Traumatic , Antioxidants/therapeutic use , Brain Injuries, Traumatic/drug therapy , Humans , SARS-CoV-2
17.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2471-2474, 2021 12.
Article in English | MEDLINE | ID: covidwho-1473989

ABSTRACT

The pathophysiological process of the disease, Covid-19, is mediated by innate immunity, with the presence of macrophages responsible for secreting type 1 and 6 interleukins (IL), tumor necrosis factor (TNF) leading to dilation of endothelial cells with a consequent increase in capillary permeability. The treatment of this disease has been much discussed, but the variability in the clinical picture, the difficulties for diagnosis and treatment, especially of those patients who have the most severe clinical condition of the disease. Immunization is an effective tool for controlling the spread and overload of health services, but its effectiveness involves high investments in the acquisition of inputs, development of vaccines, and logistics of storage and distribution. These factors can be obstacles for countries with lower economic, technological, and infrastructure indexes. Reflecting on these difficulties, we raised the possibility of adjuvant therapies with imminent research feasibility, as is the case with the use of carvacrol, a monoterpenic phenol whose has biological properties that serve as a barrier to processes mediated by free radicals, such as irritation and inflammation, due to its antioxidant action. Many authors highlighted the activity of carvacrol as a potent suppressor of COX-2 expression minimizing the acute inflammatory process, decreasing the release of some pro-inflammatory mediators such as IL-1ß, TNF-α, PGE2. Anyway, the benefits of carvacrol are numerous and the therapeutic possibilities too. With this description, the question arises: would carvacrol be a supporting treatment option, effective in minimizing the deleterious effects of Covid-19? There is still a lot to discover and research.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , COVID-19/metabolism , Cymenes/therapeutic use , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , COVID-19/immunology , Cymenes/pharmacology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism
18.
World J Gastroenterol ; 27(34): 5682-5699, 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1411116

ABSTRACT

Varying degrees of liver injuries have been reported in patients infected with the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). In general, oxidative stress is actively involved in initiation and progression of liver damage. The liver metabolizes various compounds that produce free radicals. Maintaining the oxidative/antioxidative balance is important in coronavirus disease 2019 (COVID-19) patients. Antioxidant vitamins, essential trace elements and food compounds, such as polyphenols, appear to be promising agents, with effects in oxidative burst. Deficiency of these nutrients suppresses immune function and increases susceptibility to COVID-19. Daily micronutrient intake is necessary to support anti-inflammatory and antioxidative effects but for immune function may be higher than current recommended dietary intake. Antioxidant supplements (ß-carotene, vitamin A, vitamin C, vitamin E, and selenium) could have a potential role in patients with liver damage. Available evidence suggests that supplementing the diet with a combination of micronutrients may help to optimize immune function and reduce the risk of infection. Clinical trials based on the associations of diet and SARS-CoV-2 infection are lacking. Unfortunately, it is not possible to definitively determine the dose, route of administration and best timing to intervene with antioxidants in COVID-19 patients because clinical trials are still ongoing. Until then, hopefully, this review will enable clinicians to understand the impact of micronutrient dietary intake and liver status assessment in COVID-19 patients.


Subject(s)
COVID-19 , Liver Diseases , Antioxidants/therapeutic use , Humans , Oxidative Stress , SARS-CoV-2
19.
Molecules ; 26(17)2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1390161

ABSTRACT

Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections-including coronaviruses-based ones).


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cinnamates/pharmacology , Hydroxybenzoates/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cinnamates/therapeutic use , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Humans , Hydroxybenzoates/therapeutic use , Liver Diseases/diagnosis , Liver Diseases/drug therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Plant Extracts/therapeutic use , Severity of Illness Index , Treatment Outcome
20.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1356989

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL