Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 536
Filter
Add filters

Document Type
Year range
2.
Semin Respir Crit Care Med ; 42(6): 828-838, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585701

ABSTRACT

The past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Camelus/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Outbreaks/prevention & control , Humans , Infection Control/methods , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity
4.
Immunopharmacol Immunotoxicol ; 43(6): 644-650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1545788

ABSTRACT

BACKGROUND: The current outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world. During treatment, we found that the majority of patients had a decrease in hemoglobin (Hb). Interferon-α2b (IFN-α2b) was the primary suspected drug that was related to Hb reduction. Thus, the study aimed to investigate whether IFN-α2b could induce Hb reduction in severe patients with COVID-19 and its potential mechanism. MATERIAL AND METHODS: A total of 50 patients who were admitted to the First Affiliated Hospital of Harbin Medical University with severe COVID-19 infection were enrolled from February 12th to 24th, 2020. The demographics, baseline characteristics, clinical data, and therapeutic regimen were collected retrospectively. The patients were divided into two groups according to the declined use of IFN-α2b on day 14. The Hb levels on admission, day 7, day14, and day 21 were collected and analyzed. The primary endpoint was the level of Hb on day 21. RESULTS: A total of 31 patients in the IFN-stop group and 19 patients in the non-IFN-stop group were reviewed. The age, gender, comorbidities, clinical symptoms, nutritional status, disease severity, complications, and other factors of the patients were compared, no difference was found between the IFN-stop group and the non-IFN-stop group. The Hb levels of all patients significantly decreased on day 7 compared with that on admission (p < .0001). In the IFN-stop group, the Hb level was increased in 7 days after IFN-α2b was stopped (p = .0008), whereas no difference was found between day 14 and day 21 in the non-IFN-stop group (p = .3152). CONCLUSIONS: IFN-α2b was associated with Hb reduction in the treatment of severe patients of COVID-19. Clinicians should be aware of the high incidence of Hb reduction for patients treated by IFN-α2b.


Subject(s)
Anemia/chemically induced , Antiviral Agents/adverse effects , COVID-19/drug therapy , Interferon alpha-2/adverse effects , SARS-CoV-2/drug effects , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Anemia/blood , Anemia/diagnosis , Antiviral Agents/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , China , Female , Hemoglobins/metabolism , Host-Pathogen Interactions , Humans , Interferon alpha-2/administration & dosage , Male , Middle Aged , Nebulizers and Vaporizers , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Time Factors , Treatment Outcome , Young Adult
5.
J Med Virol ; 93(12): 6557-6565, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544300

ABSTRACT

The purpose of this study was to compare the effectiveness of Atazanavir/Ritonavir/Dolutegravir/Hydroxychloroquine and Lopinavir/Ritonavir/Hydroxychloroquine treatment regimens in COVID-19 patients based on clinical and laboratory parameters. We prospectively evaluated the clinical and laboratory outcomes of 62 moderate to severe COVID-19 patients during a 10-day treatment plan. Patients were randomly assigned to either KH (receiving Lopinavir/Ritonavir [Kaletra] plus Hydroxychloroquine) or ADH (receiving Atazanavir/Ritonavir, Dolutegravir, and Hydroxychloroquine) groups. During this period, clinical and laboratory parameters and outcomes such as intensive care unit (ICU) admission or mortality rate were recorded. Compared to the KH group, after the treatment period, patients in the ADH group had higher activated partial thromboplastin time (aPTT) (12, [95% confidence interval [CI]: 6.97, 17.06), p = <0.01), international normalized ratio (INR) (0.17, [95% CI: 0.07, 0.27), p = <0.01) and lower C-reactive protein (CRP) (-14.29, (95% CI: -26.87, -1.71), p = 0.03) and potassium (-0.53, (95% CI: -1.03, -0.03), p = 0.04) values. Moreover, a higher number of patients in the KH group needed invasive ventilation (6 (20%) vs. 1 (3.1%), p = 0.05) and antibiotic administration (27 (90%) vs. 21(65.6), p = 0.02) during hospitalization while patients in the ADH group needed more corticosteroid administration (9 (28.1%) vs. 2 (6.7%), p = 0.03). There was no difference in mortality rate, ICU admission rate, and hospitalization period between the study groups. Our results suggest that the Atazanavir/Dolutegravir treatment regimen may result in a less severe disease course compared to the Lopinavir/Ritonavir treatment regimen and can be considered as an alternative treatment option beside standard care. However, to confirm our results, larger-scale studies are recommended.


Subject(s)
Antiviral Agents/therapeutic use , Atazanavir Sulfate/therapeutic use , COVID-19/drug therapy , Heterocyclic Compounds, 3-Ring/therapeutic use , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Oxazines/therapeutic use , Piperazines/therapeutic use , Pyridones/therapeutic use , Ritonavir/therapeutic use , Antiviral Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , COVID-19/pathology , Drug Combinations , Drug Therapy, Combination , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , Hydroxychloroquine/administration & dosage , Lopinavir/administration & dosage , Male , Middle Aged , Oxazines/administration & dosage , Piperazines/administration & dosage , Pyridones/administration & dosage , Ritonavir/administration & dosage , Treatment Outcome
6.
Expert Rev Anticancer Ther ; 21(12): 1371-1383, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526146

ABSTRACT

INTRODUCTION: For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED: We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION: The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.


Subject(s)
COVID-19/complications , Inflammation/drug therapy , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/immunology , Humans , Inflammation/immunology , Inflammation/virology , Neoplasms/immunology , Neoplasms/virology , Prognosis , Risk Factors , Severity of Illness Index
7.
Ann Intern Med ; 174(1): JC3, 2021 01.
Article in English | MEDLINE | ID: covidwho-1518748

ABSTRACT

SOURCE CITATION: RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396:1345-52. 33031764.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Hospitalization , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Administration, Oral , Aged , Antiviral Agents/administration & dosage , COVID-19/mortality , Drug Combinations , Female , Humans , Lopinavir/administration & dosage , Male , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , SARS-CoV-2 , United Kingdom
8.
Anesthesiology ; 135(6): 1076-1090, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1507118

ABSTRACT

BACKGROUND: Mortality in critically ill COVID-19 patients remains high. Although randomized controlled trials must continue to definitively evaluate treatments, further hypothesis-generating efforts to identify candidate treatments are required. This study's hypothesis was that certain treatments are associated with lower COVID-19 mortality. METHODS: This was a 1-yr retrospective cohort study involving all COVID-19 patients admitted to intensive care units in six hospitals affiliated with Yale New Haven Health System from February 13, 2020, to March 4, 2021. The exposures were any COVID-19-related pharmacologic and organ support treatments. The outcome was in-hospital mortality. RESULTS: This study analyzed 2,070 patients after excluding 23 patients who died within 24 h after intensive care unit admission and 3 patients who remained hospitalized on the last day of data censoring. The in-hospital mortality was 29% (593 of 2,070). Of 23 treatments analyzed, apixaban (hazard ratio, 0.42; 95% CI, 0.363 to 0.48; corrected CI, 0.336 to 0.52) and aspirin (hazard ratio, 0.72; 95% CI, 0.60 to 0.87; corrected CI, 0.54 to 0.96) were associated with lower mortality based on the multivariable analysis with multiple testing correction. Propensity score-matching analysis showed an association between apixaban treatment and lower mortality (with vs. without apixaban, 27% [96 of 360] vs. 37% [133 of 360]; hazard ratio, 0.48; 95% CI, 0.337 to 0.69) and an association between aspirin treatment and lower mortality (with vs. without aspirin, 26% [121 of 473] vs. 30% [140 of 473]; hazard ratio, 0.57; 95% CI, 0.41 to 0.78). Enoxaparin showed similar associations based on the multivariable analysis (hazard ratio, 0.82; 95% CI, 0.69 to 0.97; corrected CI, 0.61 to 1.05) and propensity score-matching analysis (with vs. without enoxaparin, 25% [87 of 347] vs. 34% [117 of 347]; hazard ratio, 0.53; 95% CI, 0.367 to 0.77). CONCLUSIONS: Consistent with the known hypercoagulability in severe COVID-19, the use of apixaban, enoxaparin, or aspirin was independently associated with lower mortality in critically ill COVID-19 patients.


Subject(s)
COVID-19/drug therapy , COVID-19/mortality , Critical Illness/mortality , Critical Illness/therapy , Aged , Aged, 80 and over , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anticoagulants/administration & dosage , Antiviral Agents/administration & dosage , Cohort Studies , Factor Xa Inhibitors/administration & dosage , Female , Humans , Male , Middle Aged , Mortality/trends , Retrospective Studies , Treatment Outcome
9.
Drug Des Devel Ther ; 15: 4447-4454, 2021.
Article in English | MEDLINE | ID: covidwho-1502185

ABSTRACT

Coronavirus disease-19 (COVID-19) pandemic is currently ongoing worldwide and causes a lot of deaths in many countries. Although different vaccines for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have been developed and are now available, there are no effective antiviral drugs to treat the disease, except for Remdesivir authorized by the US FDA to counteract the emergency. Thus, it can be useful to find alternative therapies based on the employment of natural compounds, with antiviral features, to circumvent SARS-CoV-2 infection. Pre-clinical studies highlighted the antiviral activities of epigallocatechin-3-gallate (EGCG), a catechin primarily found in green tea, against various viruses, including SARS-CoV-2. In this review, we summarize this experimental evidence and highlight the potential use of EGCG as an alternative therapeutic choice for the treatment of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Catechin/analogs & derivatives , Antiviral Agents/administration & dosage , COVID-19/virology , Catechin/administration & dosage , Catechin/pharmacology , Humans , Tea/chemistry
10.
Sci Rep ; 11(1): 13587, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1500741

ABSTRACT

Influenza is an important cause of severe illness and death among patients with underlying medical conditions and in the elderly. The aim of this study was to investigate factors associated with ICU admission and death in patients hospitalized with severe laboratory-confirmed influenza during the 2017-2018 season in Catalonia. An observational epidemiological case-to-case study was carried out. Reported cases of severe laboratory-confirmed influenza requiring hospitalization in 2017-2018 influenza season were included. Mixed-effects regression analysis was used to estimate the factors associated with ICU admission and death. A total of 1306 cases of hospitalized severe influenza cases were included, of whom 175 (13.4%) died and 217 (16.6%) were ICU admitted. Age 65-74 years and ≥ 75 years and having ≥ 2 comorbidities were positively associated with death (aOR 3.19; 95%CI 1.19-8.50, aOR 6.95, 95%CI 2.76-1.80 and aOR 1.99; 95%CI 1.12-3.52, respectively). Neuraminidase inhibitor treatment and pneumonia were negatively associated with death. The 65-74 years and ≥ 75 years age groups were negatively associated with ICU admission (aOR 0.41; 95%CI 0.23-0.74 and aOR 0.30; 95%CI 0.17-0.53, respectively). A factor positively associated with ICU admission was neuraminidase inhibitor treatment. Our results support the need to investigate the worst outcomes of hospitalized severe cases, distinguishing between death and ICU admission.


Subject(s)
Antiviral Agents/administration & dosage , Influenza, Human , Intensive Care Units , Aged , Aged, 80 and over , Female , Humans , Influenza, Human/drug therapy , Influenza, Human/mortality , Male , Middle Aged , Neuraminidase/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Retrospective Studies , Severity of Illness Index , Spain/epidemiology
11.
Virol J ; 18(1): 142, 2021 07 08.
Article in English | MEDLINE | ID: covidwho-1496196

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the role of antiviral drugs in reducing the risk of developing severe illness in patients with moderate COVID-19 pneumonia. METHODS: This retrospective cohort study included 403 adult patients with moderate COVID-19 pneumonia who were admitted to Shenzhen Third People's Hospital, China. The antiviral drugs arbidol, interferon alpha-1b, lopinavir-ritonavir and ribavirin were distributed to the patients for treatment. The primary endpoint of this study was the time to develop severe illness. RESULTS: Of the 462 patients admitted, 403 had moderate COVID-19 symptoms at hospital admission and were included in this study. 90 of the 403 (22.3%) patients progressed to severe illness. The use of arbidol was associated with a lower severity rate 3.5% compared to control group 30.5%, p-value < 0.0001; the adjusted hazard ratio was 0.28 (95% CI: 0.084-0.90, p = 0.033). The use of interferon alpha-1b was associated with a lower severity rate 15.5% compared to control group 29.3%, with p-value < 0.0001; the adjusted hazard ratio was 0.30 (95% CI: 0.15-0.58, p =  0.0005). The use of lopinavir-itonavir and ribavirin did not show significant differences in adjusted regression models. Early use of arbidol within 7 days of symptom onset was significantly associated with a reduced recovery time of - 5.2 days (IQR - 3.0 to - 7.5, p = 4e-06) compared with the control group. CONCLUSION: Treatment with arbidol and interferon alpha-1b contributes to reducing the severity of illness in patients with moderate COVID-19 pneumonia. Early use of arbidol may reduce patients' recovery time.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Indoles/administration & dosage , Interferon-alpha/administration & dosage , Adult , China , Drug Therapy, Combination , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Treatment Outcome
12.
Sci Rep ; 11(1): 20964, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1483147

ABSTRACT

Multicentre, retrospective cohort study with multivariable Cox proportional-hazards modelling and survival-time inverse-probability-weighting, evaluating the impact of different treatments on survival of proven COVID-19 patients admitted to two Hospitals in the province of Piacenza, Italy. Use of tocilizumab and of high doses of low molecular weight heparin, but not of antivirals (either alone or in combination), azithromycin, and any corticosteroid, was independently associated with lower mortality. Our results support further clinical evaluation of high doses of low molecular weight heparin and tocilizumab as COVID-19 therapeutics.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/epidemiology , Heparin/administration & dosage , Adrenal Cortex Hormones/administration & dosage , Aged , Azithromycin/administration & dosage , Female , Hospital Mortality , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Patient Admission , Probability , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
13.
Nat Commun ; 12(1): 6097, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475295

ABSTRACT

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Lung/metabolism , Lung/virology , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Tissue Distribution , Viral Load
14.
Biochem Pharmacol ; 193: 114800, 2021 11.
Article in English | MEDLINE | ID: covidwho-1471892

ABSTRACT

Remdesivir (GS-5734, Veklury®) has remained the only antiviral drug formally approved by the US FDA for the treatment of Covid-19 (SARS-CoV-2 infection). Its key structural features are the fact that it is a C-nucleoside (adenosine) analogue, contains a 1'-cyano function, and could be considered as a ProTide based on the presence of a phosphoramidate group. Its antiviral spectrum and activity in animal models have been well established and so has been its molecular mode of action as a delayed chain terminator of the viral RdRp (RNA-dependent RNA polymerase). Its clinical efficacy has been evaluated, but needs to be optimized with regard to timing, dosage and duration of treatment, and route of administration. Safety, toxicity and pharmacokinetics need to be further addressed, and so are its potential combinations with other drugs such as corticosteroids (i.e. dexamethasone) and ribavirin.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/administration & dosage , Alanine/chemistry , Alanine/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/metabolism , Drug Therapy, Combination , Humans , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
16.
PLoS Pathog ; 17(10): e1009542, 2021 10.
Article in English | MEDLINE | ID: covidwho-1468184

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.


Subject(s)
Antibodies, Viral/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 , Single-Domain Antibodies/administration & dosage , Virus Attachment/drug effects , Administration, Intranasal , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
17.
Sci Rep ; 11(1): 20012, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1462029

ABSTRACT

There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of - 3 to - 4 at a concentration of 10-100 µg/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 µg/ mL (p < 0.05 compared to untreated controls). In vivo studies using transgenic mice expressing the ACE-2 receptor, dosed nasally with SARS-COV-2 (426,000 TCID50/mL) showed a trend for nasal GCPQ (20 mg/kg) to inhibit viral load in the respiratory tract and brain, although the study was not powered to detect statistical significance. GCPQ's electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 h after nasal dosing. With a no observed adverse effect level of 18 mg/kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Nasal Sprays , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/administration & dosage , Chlorocebus aethiops , Humans , Male , Methylation , Mice, Inbred BALB C , Mice, Transgenic , SARS-CoV-2/physiology , Surface-Active Agents/administration & dosage , Surface-Active Agents/therapeutic use , Vero Cells , Viral Load/drug effects
18.
Pharmacotherapy ; 40(5): 416-437, 2020 05.
Article in English | MEDLINE | ID: covidwho-1449937

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into an emergent global pandemic. Coronavirus disease 2019 (COVID-19) can manifest on a spectrum of illness from mild disease to severe respiratory failure requiring intensive care unit admission. As the incidence continues to rise at a rapid pace, critical care teams are faced with challenging treatment decisions. There is currently no widely accepted standard of care in the pharmacologic management of patients with COVID-19. Urgent identification of potential treatment strategies is a priority. Therapies include novel agents available in clinical trials or through compassionate use, and other drugs, repurposed antiviral and immunomodulating therapies. Many have demonstrated in vitro or in vivo potential against other viruses that are similar to SARS-CoV-2. Critically ill patients with COVID-19 have additional considerations related to adjustments for organ impairment and renal replacement therapies, complex lists of concurrent medications, limitations with drug administration and compatibility, and unique toxicities that should be evaluated when utilizing these therapies. The purpose of this review is to summarize practical considerations for pharmacotherapy in patients with COVID-19, with the intent of serving as a resource for health care providers at the forefront of clinical care during this pandemic.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Coronavirus Infections/drug therapy , Immunomodulation , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Azetidines/administration & dosage , Azetidines/adverse effects , Betacoronavirus , COVID-19 , Chloroquine/administration & dosage , Chloroquine/adverse effects , Coronavirus Infections/therapy , Drug Combinations , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Immunization, Passive , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Lopinavir/administration & dosage , Lopinavir/adverse effects , Nelfinavir/administration & dosage , Nelfinavir/adverse effects , Nitro Compounds , Pandemics , Purines , Pyrazoles , Ribavirin/administration & dosage , Ribavirin/adverse effects , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Thiazoles/administration & dosage , Thiazoles/adverse effects
19.
Sci Rep ; 11(1): 19458, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447326

ABSTRACT

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Administration, Intravenous , Aerosols , Alanine/administration & dosage , Alanine/pharmacology , Animals , Antiviral Agents/administration & dosage , Disease Models, Animal , Female , Hemorrhagic Fever, Ebola/blood , Kaplan-Meier Estimate , Liver/drug effects , Liver/virology , Lung/pathology , Lung/virology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/virology , Macaca mulatta , Male , Random Allocation , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Viral Load/drug effects , Viremia/drug therapy
20.
Biomed Pharmacother ; 144: 112247, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446461

ABSTRACT

COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the development and progression of several human diseases are associated with dysregulation of miRNAs. In this regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential miRNA therapeutics in the patients who are at increased risk for severe disease.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/therapy , Genetic Therapy/methods , MicroRNAs/administration & dosage , Animals , Antiviral Agents/immunology , COVID-19/genetics , COVID-19/immunology , Drug Delivery Systems/methods , Humans , MicroRNAs/genetics , MicroRNAs/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...