Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
Add filters

Year range
1.
Signal Transduct Target Ther ; 5(1): 125, 2020 07 13.
Article in English | MEDLINE | ID: covidwho-654479

ABSTRACT

Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson's diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Heat-Shock Proteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Host-Pathogen Interactions/drug effects , Pneumonia, Viral/drug therapy , Antiviral Agents/chemical synthesis , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Chromatin Assembly and Disassembly/drug effects , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gene Expression Regulation , Heat-Shock Proteins/agonists , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/agonists , Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Host-Pathogen Interactions/genetics , Humans , Molecular Targeted Therapy/methods , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Severity of Illness Index , Signal Transduction , Transcription, Genetic/drug effects , Virus Replication/drug effects
2.
Nat Commun ; 11(1): 2750, 2020 06 02.
Article in English | MEDLINE | ID: covidwho-680538

ABSTRACT

Influenza viruses annually kill 290,000-650,000 people worldwide. Antivirals can reduce death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny. Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent transmission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on population-level incidence using a new model that links viral load dynamics from clinical trial data to between-host transmission. We estimate that ~22 million infections and >6,000 deaths would have been averted in the 2017-2018 epidemic season by administering baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h would almost double the impact. Consequently, scaling up early baloxavir treatment would substantially reduce influenza morbidity and mortality every year. The development of antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail transmission and save lives.


Subject(s)
Antiviral Agents/therapeutic use , Epidemics , Influenza, Human/drug therapy , Orthomyxoviridae/drug effects , Oxazines/therapeutic use , Pyridines/therapeutic use , Thiepins/therapeutic use , Triazines/therapeutic use , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cell Proliferation , Coronavirus Infections/drug therapy , Humans , Influenza, Human/virology , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Pandemics , Pneumonia, Viral/drug therapy , Public Health , Pyridines/pharmacology , RNA, Messenger/metabolism , Seasons , Thiepins/pharmacology , Triazines/pharmacology , Viral Load , Virus Replication/drug effects
3.
Nano Lett ; 20(7): 5367-5375, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-628240

ABSTRACT

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.


Subject(s)
Betacoronavirus/ultrastructure , Coronavirus Infections/virology , Nanostructures/ultrastructure , Pneumonia, Viral/virology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Binding Sites , Coronavirus Infections/drug therapy , Drug Design , Humans , Influenza A virus/drug effects , Influenza A virus/ultrastructure , Microscopy, Electron , Models, Biological , Nanotechnology , Pandemics , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/ultrastructure , Virus Internalization/drug effects
4.
Arch Virol ; 165(9): 1935-1945, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-617264

ABSTRACT

Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Berberine/pharmacology , Viruses/drug effects , Animals , Antiviral Agents/chemistry , Berberine/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Virus Diseases/virology , Virus Replication/drug effects , Viruses/genetics , Viruses/growth & development
5.
Molecules ; 25(17)2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-742825

ABSTRACT

Over the years, coronaviruses (CoV) have posed a severe public health threat, causing an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19 medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19 drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells, binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is being postulated that these flavonoids might also interact with ACE2. This postulation might be of interest because these compounds also show antiviral activity in vitro. This article summarizes the natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Biological Products/pharmacology , Coronavirus Infections/virology , Flavonoids/pharmacology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antiviral Agents/chemistry , Biological Products/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Disease Susceptibility , Flavonoids/chemistry , Humans , Life Cycle Stages , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Population Surveillance , Structure-Activity Relationship
6.
Nat Commun ; 11(1): 4252, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741685

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Influenza A virus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Cell Line , Endosomes/chemistry , Endosomes/drug effects , Female , Humans , Hydrogen-Ion Concentration , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Protein Conformation , Rhinovirus/drug effects , Rhinovirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
7.
Molecules ; 25(17)2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-740497

ABSTRACT

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Tinospora/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Catalytic Domain , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Discovery , Gas Chromatography-Mass Spectrometry , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Pandemics , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Pneumonia, Viral/drug therapy , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Substrate Specificity , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
8.
Sci Rep ; 10(1): 14290, 2020 08 31.
Article in English | MEDLINE | ID: covidwho-738236

ABSTRACT

Several drug candidates have been proposed and tested as the latest clinical treatment for coronavirus pneumonia (COVID-19). Chloroquine, hydroxychloroquine, ritonavir/lopinavir, and favipiravir are under trials for the treatment of this disease. The hyperpolarization technique has the ability to further provide a better understanding of the roles of these drugs at the molecular scale and in different applications in the field of nuclear magnetic resonance/magnetic resonance imaging. This technique may provide new opportunities in diagnosis and research of COVID-19. Signal amplification by reversible exchange-based hyperpolarization studies on large-sized drug candidates were carried out. We observed hyperpolarized proton signals from whole structures, due to the unprecedented long-distance polarization transfer by para-hydrogen. We also found that the optimal magnetic field for the maximum polarization transfer yield was dependent on the molecular structure. We can expect further research on the hyperpolarization of other important large molecules, isotope labeling, as well as polarization transfer on nuclei with a long spin relaxation time. A clinical perspective of these features on drug molecules can broaden the application of hyperpolarization techniques for therapeutic studies.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/virology , Drug Discovery , Pneumonia, Viral/virology , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemistry , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/diagnosis , Drug Discovery/methods , Humans , Lopinavir/chemistry , Lopinavir/pharmacology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pandemics , Pneumonia, Viral/diagnosis , Pyrazines/chemistry , Pyrazines/pharmacology , Ritonavir/chemistry , Ritonavir/pharmacology
9.
Clin Sci (Lond) ; 134(17): 2235-2241, 2020 09 18.
Article in English | MEDLINE | ID: covidwho-738221

ABSTRACT

Human serine protease inhibitors (serpins) are the main inhibitors of serine proteases, but some of them also have the capability to effectively inhibit cysteine proteases. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription. Serpin traps its target proteases by presenting a reactive center loop (RCL) as protease-specific cleavage site, resulting in protease inactivation. Mpro target sites with its active site serine and other flanking residues can possibly interact with serpins. Alternatively, RCL cleavage site of serpins with known evidence of inhibition of cysteine proteases can be replaced by Mpro target site to make chimeric proteins. Purified chimeric serpin can possibly inhibit Mpro that can be assessed indirectly by observing the decrease in ability of Mpro to cleave its chromogenic substrate. Chimeric serpins with best interaction and active site binding and with ability to form 1:1 serpin-Mpro complex in human plasma can be assessed by using SDS/PAGE and Western blot analysis with serpin antibody. Trapping SARS-CoV-2 Mpro cysteine protease using cross-class serpin cysteine protease inhibition activity is a novel idea with significant therapeutic potential.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Serpins/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , Blotting, Western , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Electrophoresis, Polyacrylamide Gel , Humans , Pandemics , Pneumonia, Viral/virology , Serpins/therapeutic use , Viral Nonstructural Proteins/chemistry
10.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Article in English | MEDLINE | ID: covidwho-733871

ABSTRACT

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
11.
Nat Commun ; 11(1): 4282, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-733525

ABSTRACT

The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus, Feline/drug effects , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Animals , Antiviral Agents/chemistry , Betacoronavirus/enzymology , Binding Sites , Chlorocebus aethiops , Coronavirus, Feline/enzymology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cytopathogenic Effect, Viral/drug effects , Drug Repositioning , Humans , Inhibitory Concentration 50 , Molecular Structure , Prodrugs , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS Virus/drug effects , SARS Virus/enzymology , Vero Cells , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
12.
SAR QSAR Environ Res ; 31(9): 643-654, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-733459

ABSTRACT

A quantitative structure-activity relationship (QSAR) model was built from a dataset of 54 peptide-type compounds as SARS-CoV inhibitors. The analysis was executed to identify prominent and hidden structural features that govern anti-SARS-CoV activity. The QSAR model was derived from the genetic algorithm-multi-linear regression (GA-MLR) methodology. This resulted in the generation of a statistically robust and highly predictive model. In addition, it satisfied the OECD principles for QSAR validation. The model was validated thoroughly and fulfilled the threshold values of a battery of statistical parameters (e.g. r 2 = 0.87, Q 2 loo = 0.82). The derived model is successful in identifying many atom-pairs as important structural features that govern the anti-SARS-CoV activity of peptide-type compounds. The newly developed model has a good balance of descriptive and statistical approaches. Consequently, the present work is useful for future modifications of peptide-type compounds for SARS-CoV and SARS-CoV-2 activity.


Subject(s)
Antiviral Agents , Betacoronavirus/drug effects , Peptides , Quantitative Structure-Activity Relationship , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Cysteine Endopeptidases , Inhibitory Concentration 50 , Linear Models , Molecular Structure , Peptides/chemistry , Peptides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors
13.
Nutrients ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-731022

ABSTRACT

The 2019 novel coronavirus, SARS-CoV-2, producing the disease COVID-19 is a pathogenic virus that targets mostly the human respiratory system and also other organs. SARS-CoV-2 is a new strain that has not been previously identified in humans, however there have been previous outbreaks of different versions of the beta coronavirus including severe acute respiratory syndrome (SARS-CoV1) from 2002 to 2003 and the most recent Middle East respiratory syndrome (MERS-CoV) which was first identified in 2012. All of the above have been recognised as major pathogens that are a great threat to public health and global economies. Currently, no specific treatment for SARS-CoV-2 infection has been identified; however, certain drugs have shown apparent efficacy in viral inhibition of the disease. Natural substances such as herbs and mushrooms have previously demonstrated both great antiviral and anti-inflammatory activity. Thus, the possibilities of natural substances as effective treatments against COVID-19 may seem promising. One of the potential candidates against the SARS-CoV-2 virus may be Inonotus obliquus (IO), also known as chaga mushroom. IO commonly grows in Asia, Europe and North America and is widely used as a raw material in various medical conditions. In this review, we have evaluated the most effective herbs and mushrooms, in terms of the antiviral and anti-inflammatory effects which have been assessed in laboratory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Fungi/chemistry , Magnoliopsida/chemistry , Plants, Medicinal/chemistry , Pneumonia, Viral/drug therapy , Agaricales/chemistry , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Basidiomycota/chemistry , Betacoronavirus , Biological Products/pharmacology , Chlorella/chemistry , Coronavirus Infections/virology , Humans , Pandemics , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/virology
14.
Cell Physiol Biochem ; 54(4): 767-790, 2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-729851

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 at the end of 2019 marked the third outbreak of a highly pathogenic coronavirus affecting the human population in the past twenty years. Cross-species zoonotic transmission of SARS-CoV-2 has caused severe pathogenicity and led to more than 655,000 fatalities worldwide until July 28, 2020. Outbursts of this virus underlined the importance of controlling infectious pathogens across international frontiers. Unfortunately, there is currently no clinically approved antiviral drug or vaccine against SARS-CoV-2, although several broad-spectrum antiviral drugs targeting multiple RNA viruses have shown a positive response and improved recovery in patients. In this review, we compile our current knowledge of the emergence, transmission, and pathogenesis of SARS-CoV-2 and explore several features of SARS-CoV-2. We emphasize the current therapeutic approaches used to treat infected patients. We also highlight the results of in vitro and in vivo data from several studies, which have broadened our knowledge of potential drug candidates for the successful treatment of patients infected with and discuss possible virus and host-based treatment options against SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/physiology , Coronaviridae/pathogenicity , Coronaviridae Infections/epidemiology , Coronaviridae Infections/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Cytokines/antagonists & inhibitors , Drug Delivery Systems , Endocytosis/drug effects , Forecasting , Genome, Viral , Global Health , Humans , Immunity, Herd , Immunization, Passive , Pandemics/prevention & control , Peptide Hydrolases/pharmacology , Peptide Hydrolases/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , RNA, Viral/genetics , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines , Virus Internalization/drug effects , Virus Replication/drug effects , Zoonoses
15.
Molecules ; 25(17)2020 Aug 23.
Article in English | MEDLINE | ID: covidwho-727434

ABSTRACT

The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Mezlocillin/chemistry , Protease Inhibitors/chemistry , Raltegravir Potassium/chemistry , Viral Nonstructural Proteins/chemistry , Allosteric Site , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Betacoronavirus/pathogenicity , Catalytic Domain , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Repositioning , Gene Expression , High-Throughput Screening Assays , Humans , Mezlocillin/pharmacology , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Raltegravir Potassium/pharmacology , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
16.
Molecules ; 25(17)2020 Aug 22.
Article in English | MEDLINE | ID: covidwho-727433

ABSTRACT

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cathepsin L/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Receptors, Virus/chemistry , Serine Endopeptidases/chemistry , Amino Acid Sequence , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Binding Sites , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Cathepsin L/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Gene Expression , High-Throughput Screening Assays , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , India , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Monosaccharides/pharmacology , Pandemics , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinazolines/chemistry , Quinazolines/isolation & purification , Quinazolines/pharmacology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Thermodynamics , Virus Internalization/drug effects
17.
Int J Mol Sci ; 21(17)2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-725538

ABSTRACT

At the moment, there are no U.S. Food and Drug Administration (U.S. FDA)-approved drugs for the treatment of COVID-19, although several antiviral drugs are available for repurposing. Many of these drugs suffer from polymorphic transformations with changes in the drug's safety and efficacy; many are poorly soluble, poorly bioavailable drugs. Current tools to reformulate antiviral APIs into safer and more bioavailable forms include pharmaceutical salts and cocrystals, even though it is difficult to classify solid forms into these regulatory-wise mutually exclusive categories. Pure liquid salt forms of APIs, ionic liquids that incorporate APIs into their structures (API-ILs) present all the advantages that salt forms provide from a pharmaceutical standpoint, without being subject to solid-state matter problems. In this perspective article, the myths and the most voiced concerns holding back implementation of API-ILs are examined, and two case studies of API-ILs antivirals (the amphoteric acyclovir and GSK2838232) are presented in detail, with a focus on drug property improvement. We advocate that the industry should consider the advantages of API-ILs which could be the genesis of disruptive innovation and believe that in order for the industry to grow and develop, the industry should be comfortable with a certain element of risk because progress often only comes from trying something different.


Subject(s)
Acyclovir/chemistry , Antiviral Agents/chemistry , Betacoronavirus/drug effects , Butyrates/chemistry , Chrysenes/chemistry , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Acyclovir/pharmacology , Antiviral Agents/pharmacology , Biological Availability , Butyrates/pharmacology , Chemistry, Pharmaceutical/methods , Chrysenes/pharmacology , Drug Repositioning/methods , Humans , Ionic Liquids/chemistry , Pandemics , Solubility
18.
Cell Death Dis ; 11(8): 656, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-725491

ABSTRACT

The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/metabolism , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Death/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Hydroxychloroquine/pharmacology , Imatinib Mesylate/pharmacology , Lysosomes/drug effects , Pandemics , Pneumonia, Viral/virology , Protein Kinase Inhibitors/pharmacology , RNA, Viral/drug effects , Vero Cells , Viral Load/drug effects
19.
mBio ; 11(4)2020 08 20.
Article in English | MEDLINE | ID: covidwho-724620

ABSTRACT

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Indoles/pharmacology , Pneumonia, Viral/drug therapy , Amino Acid Sequence , Animals , Betacoronavirus/enzymology , Chlorocebus aethiops , Chloroquine/pharmacology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Indoles/chemistry , Indoles/therapeutic use , Models, Molecular , Pandemics , Pneumonia, Viral/virology , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
20.
Commun Biol ; 3(1): 466, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-723561

ABSTRACT

Chinese herbal formulas including the lung-cleaning and toxicity-excluding (LCTE) soup have played an important role in treating the ongoing COVID-19 pandemic (caused by SARS-CoV-2) in China. Applying LCTE outside of China may prove challenging due to the unfamiliar rationale behind its application in terms of Traditional Chinese Medicine. To overcome this barrier, a biochemical understanding of the clinical effects of LCTE is needed. Here, we explore the chemical compounds present in the reported LCTE ingredients and the proteins targeted by these compounds via a network pharmacology analysis. Our results indicate that LCTE contains compounds with the potential to directly inhibit SARS-CoV-2 and inflammation, and that the compound targets proteins highly related to COVID-19's main symptoms. We predict the general effect of LCTE is to affect the pathways involved in viral and other microbial infections, inflammation/cytokine response, and lung diseases. Our work provides a biochemical basis for using LCTE to treat COVID-19 and its main symptoms.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Pandemics , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Calcium Sulfate , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Drug Delivery Systems , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Tract/drug effects , Humans , Metabolic Networks and Pathways/drug effects , Phytotherapy , Plants, Medicinal/chemistry , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Respiratory System/drug effects , Viral Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL