Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.111
Filter
1.
Asian Pac J Cancer Prev ; 23(9): 3113-3123, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2205791

ABSTRACT

BACKGROUND: This study was carried out to synthesize a new complex of Fe(II) with isoleucine dithiocarbamate ligand and to determine its potential as an anticancer and antiviral agent for SARSCOV-2. METHODS: The synthesized complexes were then characterized by UV-vis and FT-IR spectroscopy and their melting points. The value of the conductivity of the complex compound is also determined. Anti-cancer activity was tested in vitro and molecular docking. Its potential as an antiviral against SARSCOV-2 was also carried out by molecular docking. Pharmacokinetics/ADMET properties were also carried out on the complex. RESULT: Spectral results showed the successful synthesis of Fe(II) isoleucine dithiocarbamate complex. The complex produced UV-vis spectra at 268 and 575 nm, and the IR data at 399-599 cm-1 showed the coordination between the Fe(II) atoms with sulphur, nitrogen and oxygen of the isoleucine dithiocarbamate ligand. Fe(II) isoleucine dithiocarbamate had a cytotoxicity effect on the MCF-7 cell line (IC50 =613 µg/mL). The complex significantly caused morphological changes in the breast cancer cell line, finally leading to cell apoptosis. CONCLUSION: Cytotoxic test of Fe(II) isoleucine dithiocarbamate showed moderate anticancer activity on MCF-7 cancer cells and showed antiviral activity against SARSCOV-2 by interfering with spike glycoprotein -ACE2 receptors, and inhibiting major proteases and 3Clpro.


Subject(s)
Antineoplastic Agents , COVID-19 , Coordination Complexes , Angiotensin-Converting Enzyme 2 , Antineoplastic Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coordination Complexes/pharmacology , Ferrous Compounds , Humans , Isoleucine , Ligands , Molecular Docking Simulation , Nitrogen , Oxygen , Spectroscopy, Fourier Transform Infrared , Sulfur
2.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-2200270

ABSTRACT

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Subject(s)
COVID-19 , Mebendazole , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Mammals , Mebendazole/pharmacology , Microtubules , SARS-CoV-2 , Tubulin
3.
Mol Biol Rep ; 49(11): 11169-11176, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2174666

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a current global illness triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) leading to acute viral pneumonia, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and cytokine storm in severe cases. In the COVID-19 era, different unexpected old drugs are repurposed to find out effective and cheap therapies against SARS-CoV-2. One of these elected drugs is nitazoxanide (NTZ) which is an anti-parasitic drug with potent antiviral activity. It is effectively used in the treatment of protozoa and various types of helminths in addition to various viral infections. Thus, we aimed to elucidate the probable effect of NTZ on SARS-CoV-2 infections. Findings of the present study illustrated that NTZ can reduce SARS-CoV-2-induced inflammatory reactions through activation of interferon (IFN), restoration of innate immunity, inhibition of the release of pro-inflammatory cytokines, suppression of the mammalian target of rapamycin (mTOR), and induction of autophagic cell death. Moreover, it can inhibit the induction of oxidative stress which causes cytokine storm and is associated with ALI, ARDS, and multi-organ damage (MOD). This study concluded that NTZ has important anti-inflammatory and immunological properties that may mitigate SARS-CoV-2 infection-induced inflammatory disorders. Despite broad-spectrum antiviral properties of NTZ, the direct anti-SARS-CoV-2 effect was not evident and documented in recent studies. Then, in silico and in vitro studies in addition to clinical trials and prospective studies are needed to confirm the beneficial impact of NTZ on the pathogenesis of SARS-CoV-2 infection.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/drug therapy , Cytokine Release Syndrome , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokines/metabolism , Acute Lung Injury/drug therapy
5.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2130372

ABSTRACT

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
ChemMedChem ; 17(22): e202200440, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2127643

ABSTRACT

COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/drug therapy , SARS-CoV-2 , Chemistry, Pharmaceutical , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Drug Development
7.
Chem Biodivers ; 19(11): e202200266, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2127606

ABSTRACT

The unprecedented global pandemic of COVID-19 has created a daunting scenario urging an immediate generation of therapeutic strategy. Interventions to curb the spread of viral infection primarily include setting targets against the virus. Here in this study we target S protein to obstruct the viral attachment and entry and also the M pro to prevent the viral replication. For this purpose, the interaction of S protein and M pro with phytocompounds, sanguinarine and eugenol, and their derivatives were studied using computational tools. Docking studies gave evidence that 8-hydroxydihydrosanguinarine (8-HDS), a derivative of sanguinarine, showed maximum binding affinity with both the targets. The binding energies of the ligand with S protein and M pro scored to be ΔGb -9.4 Kcal/mol and ΔGb -10.3 Kcal/mol, respectively. MD simulation studies depict that the phytocompound could effectively cause structural perturbations in the targets which would affect their functions. 8-Hydroxydihydrosanguinarine distorts the α-helix in the secondary structure of M pro and RBD site of S protein. Protein-protein interaction study in presence of 8-hydroxydihydrosanguinarine also corroborate the above findings which indicate that this polyphenol interferes in the coupling of S protein and ACE2. The alterations in protonation of M pro suggest that the protein structure undergoes significant structural changes at neutral pH. ADME property of 8-hydroxydihydrosanguinarine indicates this could be a potential drug. This makes the phyto-alkaloid a possible therapeutic molecule for anti COVID-19 drug design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/drug therapy , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyridones
8.
Viruses ; 14(11)2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2143699

ABSTRACT

Small molecular nucleic acid drugs produce antiviral effects by activating pattern recognition receptors (PRRs). In this study, a small molecular nucleotide containing 5'triphosphoric acid (5'PPP) and possessing a double-stranded structure was designed and named nCoV-L. nCoV-L was found to specifically activate RIG-I, induce interferon responses, and inhibit duplication of four RNA viruses (Human enterovirus 71, Human poliovirus 1, Human coxsackievirus B5 and Influenza A virus) in cells. In vivo, nCoV-L quickly induced interferon responses and protected BALB/c suckling mice from a lethal dose of the enterovirus 71. Additionally, prophylactic administration of nCoV-L was found to reduce mouse death and relieve morbidity symptoms in a K18-hACE2 mouse lethal model of SARS-CoV-2. In summary, these findings indicate that nCoV-L activates RIG-I and quickly induces effective antiviral signals. Thus, it has potential as a broad-spectrum antiviral drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , DEAD-box RNA Helicases/genetics , RNA, Viral/genetics , Cell Line , DEAD Box Protein 58 , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferons
9.
Int J Mol Sci ; 23(22)2022 Nov 13.
Article in English | MEDLINE | ID: covidwho-2143225

ABSTRACT

Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 µg/mL, which visibly surpassed those of commercial ribavirin (655.0 µg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 µM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 µM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.


Subject(s)
Tobacco Mosaic Virus , Structure-Activity Relationship , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , DNA Helicases
10.
Front Immunol ; 13: 967716, 2022.
Article in English | MEDLINE | ID: covidwho-2142002

ABSTRACT

Background: The Omicron SARS-CoV-2 variant has spread quickly worldwide due to its effects on virus transmission and vaccine effectiveness. Interferon(IFN) has been shown to have a protective effect against SARS-CoV because of its broad antiviral activity. This study aimed to analyze the treatment effects of IFN α-2b spray in virus clearance of the Omicron SARS-CoV-2 variant. Methods: We examined the effectiveness and safety of IFN α-2b spray in Shanghai, China, with participants infected with the Omicron SARS-CoV-2 variant in an open, prospective cohort study from April 16th to May 5th, 2022. Results: A total of 871 confirmed patients were enrolled in this study. Four hundred and thirteen patients were allocated to the IFN α-2b spray group, and 458 patients were allocated to the control group. The viral shedding time was significantly different between experimental group and control group (11.90 vs.12.58, P <0.05). In the experimental group, the median administration time since the first positive test for SARS-CoV-2 was three days, ranging from 0 to 15 days. There was no obvious adverse effect associated with the spray of IFN α-2b. The univariate Cox regression analysis revealed that the administration time since the first positive test ≤3 days was a protective factor associated with viral shedding time (HR 0.81 95% CI 0.74-0.87, P <0.05). Subgroup analysis showed that the viral shedding time was 10.41 (4.00-16.00) days in the ≤3 days group, which was significantly less than that in the control group (12.58, 95% CI: 7.00-19.15, P <0.0001) and in the >3 days group (13.56, 95%CI: 7.00-22.25, P <0.0001). Conclusions: IFN α-2b spray shortened the viral shedding time of the Omicron SARS-CoV-2 variant when administrated within three days since the first positive test for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , China , Humans , Interferon alpha-2/pharmacology , Interferon-alpha/pharmacology , Interferon-alpha/therapeutic use , Prospective Studies , Virus Shedding
11.
PLoS One ; 17(11): e0273256, 2022.
Article in English | MEDLINE | ID: covidwho-2140475

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is one of the optimum targets for antiviral drug design and development. The hydroxyl groups of cytidine structures were modified with different aliphatic and aromatic groups to obtain 5´-O-acyl and 2´,3´-di-O-acyl derivatives, and then, these derivatives were employed in molecular modeling, antiviral prediction, molecular docking, molecular dynamics, pharmacological and POM studies. Density functional theory (DFT) at the B3LYP/6-31G++ level analyzed biochemical behavior and molecular electrostatic potential (MESP) of the modified cytidine derivatives. The antiviral parameters of the mutated derivatives revealed promising drug properties compared with those of standard antiviral drugs. Molecular docking has determined binding affinities and interactions between the cytidine derivatives and SARS-CoV-2 RdRp. The modified derivatives strongly interacted with prime Pro620 and Lys621 residues. The binding conformation and interactions stability were investigated by 200 ns of molecular dynamics simulations and predicted the compounds to firmly dock inside the RdRp binding pocket. Interestingly, the binding residues of the derivatives were revealed in high equilibrium showing an enhanced binding affinity for the molecules. Intermolecular interactions are dominated by both Van der Waals and electrostatic energies. Finally, the pharmacokinetic characterization of the optimized inhibitors confirmed the safety of derivatives due to their improved kinetic properties. The selected cytidine derivatives can be suggested as potential inhibitors against SARS-CoV-2. The POM Theory supports the hypothesis above by confirming the existence of an antiviral (Oδ--O'δ-) pharmacophore site of Hits.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , SARS-CoV-2 , Cytidine/pharmacology , COVID-19/drug therapy , Receptors, Drug , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase
12.
Int J Immunopathol Pharmacol ; 36: 3946320221142793, 2022.
Article in English | MEDLINE | ID: covidwho-2138626

ABSTRACT

OBJECTIVE: Medicinal herbs are being investigated for medicationhg development against SARS-CoV-2 as a rich source of bioactive chemicals. One of the finest approaches for finding therapeutically effective drug molecules in real time is virtual screening scheme such as molecular docking in conjunction with molecular dynamics (MD) simulation. These virtual techniques provide an ample opportunity for the screening of plausible inhibitors of SARS-CoV-2 different target proteins from a comprehensive and extensive phytochemical library. The study was designed to identify potential phytochemicals by virtual screening against different receptor proteins. METHODS: In the current study, a library of plant secondary metabolites was created by manually curating 120 phytochemicals known to have antimicrobial as well as antiviral properties. In the current study, different potential phytochemicals were identified by virtual screening against various selected receptor proteins (i.e., viral main proteases, RNA-dependent RNA polymerase (RdRp), ADP ribose phosphatase, nonstructural proteins NSP7, NSP8, and NSP9) which are key proteins responsible for transcription, replication and maturation of SARS-CoV-2 in the host. Top three phytochemicals were selected against each viral receptor protein based on their best S-scores, RMSD values, molecular interactions, binding patterns and drug-likeness properties. RESULTS: The results of molecular docking study revealed that phytochemicals (i.e., baicalin, betaxanthin, epigallocatechin, fomecin A, gallic acid, hortensin, ichangin, kaempferol, limonoic acid, myricetin hexaacetat, pedalitin, quercetin, quercitrin, and silvestrol) have strong antiviral potential against SARS-CoV-2. Additionally, the reported preeminent reliable phytochemicals also revealed toxicity by no means during the evaluation through ADMET profiling. Moreover, the MD simulation study also exhibited thermal stability and stable binding affinity of the pedalitin with SARS-CoV-2 RdRp and SARS-CoV-2 main protease which suggests appreciable efficacy of the lead optimization. CONCLUSION: The biological activity and pharmacologically distinguishing characteristics of these lead compounds also satisfied as repurposing antiviral drug contenders and are worth substantial evaluation in the biological laboratory for the recommendation of being plausible antiviral drug candidates against SARS-CoV-2.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , SARS-CoV-2 , COVID-19/drug therapy , Phytochemicals/pharmacology , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase
14.
Sci Rep ; 12(1): 19934, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2133627

ABSTRACT

In this paper, we synthesized Ag/ZnO composite colloidal nanoparticles and the surface of nanoparticles was improved by amodiaquine ligand. The synthesized nanoparticles were characterized using the XRD diffraction pattern, FT-IR Spectroscopy, TEM image, and UV-Vis spectroscopy. The antibacterial, antifungal, and antiviral effects of the synthesized colloid were examined on E.coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae bacteria, and Candida Albicans and form spore aspergillus fungi, also influenza, herpes simplex, and covid 19 viruses. The results indicate more than 7 log removal of the bacteria, fungi, and viruses by synthesized colloid with a concentration of 15 µg/L (Ag)/50 µg/ml (ZnO). This removal for covid 19 virus is from 3.2 × 108 numbers to 21 viruses within 30 s. Also, irritation and toxicity tests of the synthesized colloid show harmless effects on human cells and tissues. These colloidal nanoparticles were used as mouthwash solution and their clinical tests were done on 500 people infected by the coronavirus. The results indicate that by washing their mouth and nose three times on day all patients got healthy at different times depending on the depth of the disease. Almost all people with no signs of infection and using this solution as a mouthwash didn't infect by the virus during the study.


Subject(s)
COVID-19 , Disinfectants , Metal Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Disinfectants/pharmacology , Amodiaquine/pharmacology , Metal Nanoparticles/chemistry , Antiviral Agents/pharmacology , Spectroscopy, Fourier Transform Infrared , Mouthwashes/pharmacology , COVID-19/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli
15.
Nat Commun ; 13(1): 7284, 2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2133432

ABSTRACT

Molnupiravir is an antiviral, currently approved by the UK Medicines and Healthcare products Regulatory Agency (MHRA) for treating at-risk COVID-19 patients, that induces lethal error catastrophe in SARS-CoV-2. How this drug-induced mechanism of action might impact the emergence of resistance mutations is unclear. To investigate this, we used samples from the AGILE Candidate Specific Trial (CST)-2 (clinical trial number NCT04746183). The primary outcomes of AGILE CST-2 were to measure the drug safety and antiviral efficacy of molnupiravir in humans (180 participants randomised 1:1 with placebo). Here, we describe the pre-specified exploratory virological endpoint of CST-2, which was to determine the possible genomic changes in SARS-CoV-2 induced by molnupiravir treatment. We use high-throughput amplicon sequencing and minor variant analysis to characterise viral genomics in each participant whose longitudinal samples (days 1, 3 and 5 post-randomisation) pass the viral genomic quality criteria (n = 59 for molnupiravir and n = 65 for placebo). Over the course of treatment, no specific mutations were associated with molnupiravir treatment. We find that molnupiravir significantly increased the transition:transversion mutation ratio in SARS-CoV-2, consistent with the model of lethal error catastrophe. This study highlights the utility of examining intra-host virus populations to strengthen the prediction, and surveillance, of potential treatment-emergent adaptations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Genomics
16.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2130694

ABSTRACT

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animals , Humans , Coronavirus 3C Proteases , Vero Cells , COVID-19/drug therapy , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Docking Simulation
17.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2130693

ABSTRACT

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , COVID-19/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
18.
Elife ; 112022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2124073

ABSTRACT

With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cysteine Endopeptidases/metabolism , Humans , Protease Inhibitors , SARS-CoV-2/genetics , Saccharomyces cerevisiae/metabolism , Viral Nonstructural Proteins/metabolism
19.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2123691

ABSTRACT

We previously discovered that exogenously expressed GFP-tagged cytoplasmic human myxovirus resistance protein (MxA), a major antiviral effector of Type I and III interferons (IFNs) against several RNA- and DNA-containing viruses, existed in the cytoplasm in phase-separated membraneless biomolecular condensates of varying sizes and shapes with osmotically regulated disassembly and reassembly. In this study we investigated whether cytoplasmic IFN-α-induced endogenous human MxA structures were also biomolecular condensates, displayed hypotonic osmoregulation and the mechanisms involved. Both IFN-α-induced endogenous MxA and exogenously expressed GFP-MxA formed cytoplasmic condensates in A549 lung and Huh7 hepatoma cells which rapidly disassembled within 1-2 min when cells were exposed to 1,6-hexanediol or to hypotonic buffer (~40-50 mOsm). Both reassembled into new structures within 1-2 min of shifting cells to isotonic culture medium (~330 mOsm). Strikingly, MxA condensates in cells continuously exposed to culture medium of moderate hypotonicity (in the range one-fourth, one-third or one-half isotonicity; range 90-175 mOsm) first rapidly disassembled within 1-3 min, and then, in most cells, spontaneously reassembled 7-15 min later into new structures. This spontaneous reassembly was inhibited by 2-deoxyglucose (thus, was ATP-dependent) and by dynasore (thus, required membrane internalization). Indeed, condensate reassembly was preceded by crowding of the cytosolic space by large vacuole-like dilations (VLDs) derived from internalized plasma membrane. Remarkably, the antiviral activity of GFP-MxA against vesicular stomatitis virus survived hypoosmolar disassembly and subsequent reassembly. The data highlight the exquisite osmosensitivity of MxA condensates, and the preservation of antiviral activity in the face of hypotonic stress.


Subject(s)
Antiviral Agents , GTP Phosphohydrolases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , GTP Phosphohydrolases/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Osmoregulation , Biomolecular Condensates , Interferon-alpha/pharmacology , Interferon-alpha/metabolism , Cytoplasm/metabolism , Proteins/metabolism
20.
Front Immunol ; 13: 1016982, 2022.
Article in English | MEDLINE | ID: covidwho-2123416

ABSTRACT

Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.


Subject(s)
Herpesvirus 1, Suid , Swine , Animals , Antiviral Agents/pharmacology , Epithelial Cells , Interferon-alpha
SELECTION OF CITATIONS
SEARCH DETAIL