Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Huan Jing Ke Xue ; 43(6): 2996-3004, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876194

ABSTRACT

The seasonal variation and spatial distribution of pharmaceuticals in typical drinking water sources in the middle reaches of the Yangtze River were analyzed using the solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry methods. Combined with the risk entropy method, the corresponding ecological risks for aquatic organisms were evaluated. The results showed that 80% of the target pharmaceuticals were detected in the drinking water sources, with average concentrations of 0.07-13.00 ng·L-1. The concentrations of the target pharmaceuticals were lower than or comparable with those in other drinking water sources reported in China. The spatiotemporal distribution of different pharmaceuticals varied. Generally, the detection level in winter was higher than that in summer, and there was no significant difference between that upstream and that downstream. This might be mainly attributed to seasonal/regional use and emissions of the pharmaceuticals, the impact of flow rate on dilution, and the impact of temperature on biodegradation. Compared with those before the COVID-19 epidemic, the detection concentrations of the target pharmaceuticals were relatively low. The reason for this might be that the prevention and control of the epidemic reduced the use and emission of the pharmaceuticals to a certain extent, and the high rainfall and runoff strengthened the dilution of water flow. The target pharmaceuticals, especially antibiotics, posed medium or low risks to aquatic organisms (especially algae). Considering the ecological risks and genotoxicity of pharmaceuticals and the potential risks of antibiotic-resistant genes, it is suggested to strengthen the investigation, evaluation, treatment, and control of pharmaceuticals in the water environment.


Subject(s)
COVID-19 , Drinking Water , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Aquatic Organisms , China , Drinking Water/analysis , Environmental Monitoring/methods , Humans , Pharmaceutical Preparations , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 299: 134373, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1748141

ABSTRACT

The ongoing COVID-19 pandemic is leading to an increase of the global production of plastics since the use of personal protective equipment (PPEs, i.e. gloves, gowns, masks, packaging items), has become mandatory to prevent the spread of the virus. Plastic breaks down into micro/nano particles due to physical or chemical or biological actions into environment. Due to small dimensions, ubiquitous and persistent nature, the plastic particles represent a significant threat to ecosystems and can entry into food chains. Among the plastic polymers used for PPEs, polystyrene is less studied regarding its eco-geno-toxicity. This study aims to investigate acute, chronic and subchronic effects of the microplastic polystyrene beads (PS-MP, size 1.0 µm) on three freshwater species, the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. Furthermore, the potential genotoxicity and the ROS production due to the PS-MP were also determined in C. dubia. Results revealed that the acute effects occurred at concentrations of PS-MP in the order of dozens of mg/L in B. calyciflorus and C. dubia and hundreds of mg/L in H. incongruens. Regarding long-term toxicity, increasing chronic effects with EC50s in the order of units (C. dubia), hundreds (B. calyciflorus) and thousands (R. subcapitata) of µg/L were observed. Both for acute and chronic/sub chronic toxicity, daphnids were more sensitive to polystyrene than ostracods. Moreover, when C. dubia neonates were exposed to the PS-MP, alterations in genetic material as well as the production of ROS occurred, starting from concentrations in the order of units of µg/L, probably due to inflammatory responses. At last, the risk quotient (RQ) as a measure of risk posed by PS-MPs in freshwater environment, was calculated obtaining a value of 7.2, higher than the threshold value of 1.


Subject(s)
COVID-19 , Rotifera , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Fresh Water , Humans , Infant, Newborn , Microplastics/toxicity , Pandemics , Plastics/toxicity , Polystyrenes/toxicity , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Food Funct ; 11(6): 5565-5572, 2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-1721602

ABSTRACT

To date, no specific drug has been discovered for the treatment of COVID-19 and hence, people are in a state of anxiety. Thus, there is an urgent need to search for various possible strategies including nutritional supplementation. In this study, we have tried to provide a reference for protein supplementation. Specifically, 20 marine fish proteins were subjected to in silico hydrolysis by gastrointestinal enzymes, and a large number of active peptides were generated. Then, the binding abilities of these peptides to SARS-CoV-2 main protease and monoamine oxidase A were assessed. The results showed that NADH dehydrogenase could be a good protein source in generating potent binders to the two enzymes, followed by cytochrome b. In addition, some high-affinity oligopeptides (VIQY, ICIY, PISQF, VISAW, AIPAW, and PVSQF) were identified as dual binders to the two enzymes. In summary, the supplementation of some fish proteins can be helpful for COVID-19 patients; the identified oligopeptides can be used as the lead compounds to design potential inhibitors against COVID-19 and anxiety.


Subject(s)
Antiviral Agents/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/virology , Dietary Supplements , Fish Proteins/metabolism , Monoamine Oxidase/metabolism , Pneumonia, Viral/virology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Aquatic Organisms , Betacoronavirus/enzymology , COVID-19 , Coronavirus Infections/drug therapy , Decapodiformes/metabolism , Fish Proteins/chemistry , Fish Proteins/therapeutic use , Fishes/metabolism , Models, Molecular , Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Pandemics , Perciformes/metabolism , Pneumonia, Viral/drug therapy , Protein Binding , Protein Conformation , SARS-CoV-2 , Salmon/metabolism , Tuna/metabolism
4.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1715567

ABSTRACT

Alkaloids are nitrogen-containing compounds, biosynthesized by both marine and terrestrial organisms, often with strong biological properties [...].


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Drug Discovery , Alkaloids/isolation & purification , Aquatic Organisms/chemistry , Biological Products , Drug Discovery/methods , Plant Extracts
6.
Mar Drugs ; 20(1)2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1667236

ABSTRACT

The underexplored biodiversity of seaweeds has recently drawn great attention from researchers to find the bioactive compounds that might contribute to the growth of the blue economy. In this study, we aimed to explore the effect of seasonal growth (from May to September) on the in vitro antioxidant (FRAP, DPPH, and ORAC) and antimicrobial effects (MIC and MBC) of Cystoseira compressa collected in the Central Adriatic Sea. Algal compounds were analyzed by UPLC-PDA-ESI-QTOF, and TPC and TTC were determined. Fatty acids, among which oleic acid, palmitoleic acid, and palmitic acid were the dominant compounds in samples. The highest TPC, TTC and FRAP were obtained for June extract, 83.4 ± 4.0 mg GAE/g, 8.8 ± 0.8 mg CE/g and 2.7 ± 0.1 mM TE, respectively. The highest ORAC value of 72.1 ± 1.2 µM TE was obtained for the August samples, and all samples showed extremely high free radical scavenging activity and DPPH inhibition (>80%). The MIC and MBC results showed the best antibacterial activity for the June, July and August samples, when sea temperature was the highest, against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enteritidis. The results show C. compressa as a potential species for the industrial production of nutraceuticals or functional food ingredients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Seaweed , Animals , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Aquatic Organisms , Biphenyl Compounds , Mediterranean Sea , Microbial Sensitivity Tests , Picrates , Plant Extracts/chemistry , Salmonella enteritidis/drug effects , Seasons , Staphylococcus aureus/drug effects
7.
J Hazard Mater ; 405: 124043, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1635125

ABSTRACT

In this review, we present the environmental perspectives of the viruses and antiviral drugs related to SARS-CoV-2. The present review paper discusses occurrence, fate, transport, susceptibility, and inactivation mechanisms of viruses in the environment as well as environmental occurrence and fate of antiviral drugs, and prospects (prevalence and occurrence) of antiviral drug resistance (both antiviral drug resistant viruses and antiviral resistance in the human). During winter, the number of viral disease cases and environmental occurrence of antiviral drug surge due to various biotic and abiotic factors such as transmission pathways, human behaviour, susceptibility, and immunity as well as cold climatic conditions. Adsorption and persistence critically determine the fate and transport of viruses in the environment. Inactivation and disinfection of virus include UV, alcohol, and other chemical-base methods but the susceptibility of virus against these methods varies. Wastewater treatment plants (WWTPs) are major reserviors of antiviral drugs and their metabolites and transformation products. Ecotoxicity of antiviral drug residues against aquatic organisms have been reported, however more threatening is the development of antiviral resistance, both in humans and in wild animal reservoirs. In particular, emergence of antiviral drug-resistant viruses via exposure of wild animals to high loads of antiviral residues during the current pandemic needs further evaluation.


Subject(s)
Antiviral Agents , Drug Resistance, Viral/drug effects , Environmental Microbiology , Environmental Pollutants , SARS-CoV-2 , Virus Inactivation , Adsorption , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Aquatic Organisms/drug effects , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/etiology , Ecotoxicology , Environmental Pollutants/chemistry , Environmental Pollutants/therapeutic use , Environmental Pollutants/toxicity , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Seasons , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Water Purification
8.
Mar Drugs ; 19(12)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542656

ABSTRACT

The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Deoxy Sugars/pharmacology , Mannans/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Seaweed , Antiviral Agents/therapeutic use , Aquatic Organisms , Deoxy Sugars/therapeutic use , Humans , Mannans/therapeutic use , Plant Extracts/therapeutic use , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Structure-Activity Relationship
9.
Sci Total Environ ; 818: 151711, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1517467

ABSTRACT

The outbreak of COVID-19 has led to the large-scale usage of chlorinated disinfectants in cities. Disinfectants and disinfection by-products (DBPs) enter rivers through urban drainage and surface runoff. We investigated the variations in residual chlorine, DBPs, and different aquatic organisms in the Hanjiang, Fuhe, and Qinglinghe Rivers in Wuhan during the COVID-19 pandemic. The sampling sites were from the wastewater treatment plant outlets to the downstream drinking water treatment plant intakes. Total residual chlorine and DBPs (dichloromethane and trichloromethane) detected in the river water ranged from 0 to 0.84 mg/L and 0 to 0.034 mg/L, respectively. The residual chlorine and DBPs showed a gradual reduction pattern related to water flow, and the concentration at intakes did not exceed the Chinese drinking water source quality standards. Phytoplankton and zooplankton densities were not significantly correlated with residual chlorine and DBPs. The fluctuations in phytoplankton resource use efficiency (RUE) and zooplankton RUE in the Fuhe River, with the highest residual chlorine, and the Qinglinghe River with the highest DBPs, were higher than those in the Hanjiang River. For benthic macroinvertebrates, the number of functional feeding groups in the Hanjiang River was higher than that in the Fuhe and Qinglinghe Rivers. The water and sediment bacterial communities in the Hanjiang River differed significantly from those in the Fuhe and Qingling Rivers. The denitrification function involved in N metabolism was stronger in the Fuhe and Qinglinghe Rivers. Structural equation modelling revealed that residual chlorine and DBPs impacted the diversity of benthos through direct and indirect effects on plankton. Although large-scale chlorine-containing disinfectants use occurred during the investigation, it did not harm the density of the detected aquatic organisms in water sources. With the regular use of chlorinated disinfectants for indoor and outdoor environments in response to the SARS-CoV-2 globally, it is still necessary to study the long-term and accumulated responses of water ecosystems exposed to chlorine-containing disinfectants.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Aquatic Organisms , Chlorine , Cities , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
10.
Mar Drugs ; 19(10)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1485164

ABSTRACT

Inflammation is the body's defense reaction in response to stimulations and is the basis of various physiological and pathological processes. However, chronic inflammation is undesirable and closely related to the occurrence and development of diseases. The ocean gives birth to unique and diverse bioactive substances, which have gained special attention and been a focus for anti-inflammatory drug development. So far, numerous promising bioactive substances have been obtained from various marine organisms such as marine bacteria and fungi, sponges, algae, and coral. This review covers 71 bioactive substances described during 2015-2020, including the structures (65 of which), species sources, evaluation models and anti-inflammatory activities of these substances. This review aims to provide some reference for the research progress of marine-organism-derived anti-inflammatory metabolites and give more research impetus for their conversion to novel anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents/metabolism , Aquatic Organisms , Biological Products , Animals , Anthozoa , Anti-Inflammatory Agents/chemistry , Humans , Inflammation/prevention & control , Microalgae , Porifera , Research
11.
Mar Drugs ; 19(10)2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1480861

ABSTRACT

The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996-2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Animals , Aquatic Organisms , Biological Products
12.
Mar Drugs ; 19(10)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1480860

ABSTRACT

To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five known azaphilones, hypocrellone A (3), eupenicilazaphilone C (4), ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (5), sclerotiorin (6), and isochromophilone IV (7) were isolated from the alga-derived fungus Penicillium sclerotiorum. The structures of isolated azaphilones (1-7) were elucidated by spectrometric identification, especially HRESIMS, CD, and NMR data analyses. Concerning bioactivity, cytotoxic, anti-inflammatory, and anti-fibrosis activities of those isolates were evaluated. As a result, compound 1 showed selective toxicity toward neuroblastoma cell line SH-SY5Y among seven cancer and one fibroblast cell lines. 20 µM of compounds 1, 3, and 7 inhibited the TNF-α-induced NFκB phosphorylation but did not change the NFκB activity. Compounds 2 and 6 respectively promoted and inhibited SMAD-mediated transcriptional activities stimulated by TGF-ß.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Microalgae , Penicillium , Pigments, Biological/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Benzopyrans/chemistry , Benzopyrans/therapeutic use , Cell Line, Tumor/drug effects , Fibroblasts/drug effects , Functional Food , Neuroblastoma/drug therapy , Pigments, Biological/chemistry , Pigments, Biological/therapeutic use , Structure-Activity Relationship
13.
Mar Drugs ; 19(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1448903

ABSTRACT

Cardiovascular disease (CVD), which involves the onset and exacerbation of various conditions including dyslipidemia, activation of the renin-angiotensin system, vascular endothelial cell damage, and oxidative stress, is a leading cause of high mortality rates and accounts for one-third of deaths worldwide. Accordingly, as dietary changes in daily life are thought to greatly reduce the prevalence of CVD, numerous studies have been conducted to examine the potential use of foods and their bioactive components for preventing and treating CVD. In particular, seaweeds contain unique bioactive metabolites that are not found in terrestrial plants because of the harsh environment in which they survive, leading to in vitro and in vivo studies of their prevention and treatment effects. This review summarizes studies that focused on the beneficial effects of seaweeds and their natural products targeting markers involved in a cascade of mechanisms related to CVD pathogenesis. The purpose of this review is to describe the potential of seaweeds and their natural products for preventing and treating CVD based on in vivo and in vitro studies. This review provides a basis for future research in the field of marine drugs.


Subject(s)
Coronary Artery Disease/prevention & control , Seaweed , Animals , Aquatic Organisms , Biological Products , Functional Food , Humans , Hypolipidemic Agents/therapeutic use
14.
Viruses ; 13(9)2021 09 13.
Article in English | MEDLINE | ID: covidwho-1411081

ABSTRACT

Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry , Virus Diseases/epidemiology , Alginates/chemistry , Alginates/pharmacology , Antiviral Agents/chemistry , Glucans/chemistry , Glucans/pharmacology , Humans , Molecular Structure , Pandemics , Polysaccharides/chemistry , Virus Diseases/drug therapy , Virus Diseases/etiology , Virus Diseases/prevention & control
15.
Mar Drugs ; 19(8)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1376892

ABSTRACT

Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-ß-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKß) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aquatic Organisms/chemistry , Fucose/pharmacology , Galactose/pharmacology , Seaweed/chemistry , Animals , Inhibitory Concentration 50 , Mice , RAW 264.7 Cells/drug effects , Zebrafish
16.
Mar Drugs ; 19(8)2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1325730

ABSTRACT

The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.


Subject(s)
Antiviral Agents/chemistry , Aquatic Organisms/chemistry , COVID-19/drug therapy , Animals , Antiviral Agents/pharmacology , Humans , Polyphosphates/pharmacology , Polyphosphates/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
17.
Mar Drugs ; 19(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325729

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , Computer Simulation , Heparin/chemistry , Heparin/metabolism , Humans , Molecular Docking Simulation , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Sulfates/chemistry
18.
Mar Drugs ; 19(7)2021 Jun 26.
Article in English | MEDLINE | ID: covidwho-1323295

ABSTRACT

Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production-e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians' microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.


Subject(s)
Aquatic Organisms , Urochordata , Animals , Biotechnology , Symbiosis
19.
Genes (Basel) ; 11(10)2020 09 24.
Article in English | MEDLINE | ID: covidwho-1298143

ABSTRACT

Since the release of the MinION sequencer in 2014, it has been applied to great effect in the remotest and harshest of environments, and even in space. One of the most common applications of MinION is for nanopore-based DNA barcoding in situ for species identification and discovery, yet the existing sample capability is limited (n ≤ 10). Here, we assembled a portable sequencing setup comprising the BentoLab and MinION and developed a workflow capable of processing 32 samples simultaneously. We demonstrated this enhanced capability out at sea, where we collected samples and barcoded them onboard a dive vessel moored off Sisters' Islands Marine Park, Singapore. In under 9 h, we generated 105 MinION barcodes, of which 19 belonged to fresh metazoans processed immediately after collection. Our setup is thus viable and would greatly fortify existing portable DNA barcoding capabilities. We also tested the performance of the newly released R10.3 nanopore flow cell for DNA barcoding, and showed that the barcodes generated were ~99.9% accurate when compared to Illumina references. A total of 80% of the R10.3 nanopore barcodes also had zero base ambiguities, compared to 50-60% for R9.4.1, suggesting an improved homopolymer resolution and making the use of R10.3 highly recommended.


Subject(s)
Aquatic Organisms/genetics , Coral Reefs , DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Nanopores , Sequence Analysis, DNA/methods , Software , Animals , Biodiversity
20.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL