Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Trials ; 21(1): 892, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-895025

ABSTRACT

OBJECTIVES: The primary objectives of this study are to determine efficacy of Siddha medicine, Kabasura kudineer in reduction of SARS-CoV-2 viral load and reducing the onset of symptoms in asymptomatic COVID-19 when compared to Vitamin C and Zinc (CZ) supplementation. In addition, the trial will examine the changes in the immunological markers of the Siddha medicine against control. The secondary objectives of the trial are to evaluate the safety of the Siddha medicine and to document clinical profile of asymptomatic COVID-19 as per principles of Siddha system of Medicine. TRIAL DESIGN: A single centre, open-label, parallel group (1:1 allocation ratio), exploratory randomized controlled trial. PARTICIPANTS: Cases admitted at non-hospital settings designated as COVID Care Centre and managed by the State Government Stanley Medical College, Chennai, Tamil Nadu, India will be recruited. Eligible participants will be those tested positive for COVID-19 by Reverse Transcriptase Polymerase Chain reaction (RT-PCR) aged 18 to 55 years without any symptoms and co-morbidities like diabetes mellitus, hypertension and bronchial asthma. Those pregnant or lactating, with severe respiratory disease, already participating in COVID trials and with severe illness like malignancy will be excluded. INTERVENTION AND COMPARATOR: Adopting traditional methods, decoction of Kabasura kudineer will be prepared by boiling 5g of KSK powder in 240 ml water and reduced to one-fourth (60ml) and filtered. The KSK group will receive a dose of 60ml decoction, orally in the morning and evening after food for 14 days. The control group will receive Vitamin C (60000 IU) and Zinc tablets (100mg) orally in the morning and evening respectively for 14 days. MAIN OUTCOMES: The primary outcomes are the reduction in the SARS-CoV-2 load [as measured by cyclic threshold (CT) value of RT-PCR] from the baseline to that of seventh day of the treatment, prevention of progression of asymptomatic to symptomatic state (clinical symptoms like fever, cough and breathlessness) and changes in the immunity markers [Interleukins (IL) 6, IL10, IL2, Interferon gamma (IFNγ) and Tumor Necrosis Factor (TNF) alpha]. Clinical assessment of COVID-19 as per standard Siddha system of medicine principles and the occurrence of adverse effects will be documented as secondary outcomes. RANDOMISATION: The assignment to the study or control group will be allocated in equal numbers through randomization using random number generation in Microsoft Excel by a statistician who is not involved in the trial. The allocation scheme will be made by an independent statistician using a sealed envelope. The participants will be allocated immediately after the eligibility assessment and informed consent procedures. BLINDING (MASKING): This study is unblinded. The investigators will be blinded to data analysis, which will be carried out by a statistician who is not involved in the trial. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Sample size could not be calculated, as there is no prior trial on KSK. This trial will be a pilot trial. Hence, we intend to recruit 60 participants in total using a 1:1 allocation ratio, with 30 participants randomised into each arm. TRIAL STATUS: Protocol version 2.0 dated 16th May 2020. Recruitment is completed. The trial started recruitment on the 25th May 2020. We anticipate study including data analysis will finish on November 2020. We also stated that protocol was submitted before the end of data collection TRIAL REGISTRATION: The study protocol was registered with clinical trial registry of India (CTRI) with CTRI/2020/05/025215 on 16 May 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Ascorbic Acid , Betacoronavirus , Coronavirus Infections , Medicine, Ayurvedic/methods , Pandemics , Pneumonia, Viral , Zinc , Adult , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , Asymptomatic Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Dietary Supplements , Drug Monitoring/methods , Female , Humans , India , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Treatment Outcome , Viral Load/methods , Zinc/administration & dosage , Zinc/adverse effects
2.
Pharmacol Rep ; 72(6): 1517-1528, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-893372

ABSTRACT

The mainstay of management of coronavirus disease 2019 (COVID-19) is mainly supportive as to date there is no effective antiviral treatment, apart from remdesivir which has been approved by Food and Drug administration (FDA) for treatment of COVID-19, or vaccine. Supplementation with micronutrients, such as vitamins and minerals, has gained an increasing interest as part of the supportive management of COVID-19. Vitamin C levels in serum and leukocytes are depleted during the acute stage of infection owing to increased metabolic demands. High-dose vitamin C supplement helps to normalise both serum and leukocytes vitamin C levels. Vitamin C has multiple pharmacological characteristics, antiviral, anti-oxidant, anti-inflammatory and immunomodulatory effects, which make it a potential therapeutic option in management of COVID-19. The use of high dose of intravenous vitamin C for management of COVID-19 in China and the United Stated has shown promising results. There were no reported adverse reactions with the short-term use of high dose of vitamin C. Given the fact that vitamin C is cheap, available and safe drug with beneficial effects in management of viral infections and critically ill patients reported in previous clinical trials, it is sensible to add it to COVID-19 management protocol particularly if the current ongoing clinical trials testing the effect of vitamin C in management of COVID-19 show positive results.


Subject(s)
Ascorbic Acid/administration & dosage , /drug therapy , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Ascorbic Acid/pharmacology , Dietary Supplements , Dose-Response Relationship, Drug , Humans
3.
J Investig Med High Impact Case Rep ; 8: 2324709620963635, 2020.
Article in English | MEDLINE | ID: covidwho-835773

ABSTRACT

As COVID-19 (coronavirus disease 2019) spreads across the world multiple therapeutic interventions have been tried to reduce morbidity and mortality. We describe a case of collapsing focal sclerosing glomerulosclerosis (FSGS) and acute oxalate nephropathy in a patient treated with high-dose intravenous vitamin C for severe COVID-19 infection. Collapsing FSGS has been described in patients with COVID-19 infection associated with APOL-1; however, this case had collapsing FSGS developing in low-risk heterozygous APOL-1 variant, and we postulate that the intensity of the COVID-19 cytokine storm overwhelmed the protective state of APOL-1 heterozygosity. This case illustrates the importance of assessing the risk and benefit of planned therapeutic interventions on a case-by-case basis especially when there are still so many unknowns in the management of COVID-19 infection. Strong consideration should be given for performing a renal biopsy in patients who develop multifactorial acute kidney injury.


Subject(s)
Ascorbic Acid/adverse effects , Betacoronavirus , Coronavirus Infections/drug therapy , Glomerulosclerosis, Focal Segmental/chemically induced , Hyperoxaluria/chemically induced , Kidney Glomerulus/pathology , Oxalates/metabolism , Pneumonia, Viral/drug therapy , Acute Disease , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Ascorbic Acid/administration & dosage , Biopsy , Coronavirus Infections/epidemiology , Disease Progression , Glomerulosclerosis, Focal Segmental/diagnosis , Humans , Hyperoxaluria/diagnosis , Hyperoxaluria/metabolism , Injections, Intravenous , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Vitamins/administration & dosage , Vitamins/adverse effects
4.
Am J Case Rep ; 21: e925521, 2020 Jul 25.
Article in English | MEDLINE | ID: covidwho-679496

ABSTRACT

BACKGROUND Coronavirus disease 2019 (COVID-19) continues to spread, with confirmed cases now in more than 200 countries. Thus far there are no proven therapeutic options to treat COVID-19. We report a case of COVID-19 with acute respiratory distress syndrome who was treated with high-dose vitamin C infusion and was the first case to have early recovery from the disease at our institute. CASE REPORT A 74-year-old woman with no recent sick contacts or travel history presented with fever, cough, and shortness of breath. Her vital signs were normal except for oxygen saturation of 87% and bilateral rhonchi on lung auscultation. Chest radiography revealed air space opacity in the right upper lobe, suspicious for pneumonia. A nasopharyngeal swab for severe acute respiratory syndrome coronavirus-2 came back positive while the patient was in the airborne-isolation unit. Laboratory data showed lymphopenia and elevated lactate dehydrogenase, ferritin, and interleukin-6. The patient was initially started on oral hydroxychloroquine and azithromycin. On day 6, she developed ARDS and septic shock, for which mechanical ventilation and pressor support were started, along with infusion of high-dose intravenous vitamin C. The patient improved clinically and was able to be taken off mechanical ventilation within 5 days. CONCLUSIONS This report highlights the potential benefits of high-dose intravenous vitamin C in critically ill COVID-19 patients in terms of rapid recovery and shortened length of mechanical ventilation and ICU stay. Further studies will elaborate on the efficacy of intravenous vitamin C in critically ill COVID-19.


Subject(s)
Ascorbic Acid/administration & dosage , Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Recovery of Function , Respiration, Artificial/methods , Aged , Female , Humans , Infusions, Intravenous , Pandemics , Vitamins/administration & dosage
5.
Trials ; 21(1): 614, 2020 Jul 06.
Article in English | MEDLINE | ID: covidwho-656562

ABSTRACT

OBJECTIVES: This study will evaluate the main hypothesis that supplementation with vitamins A, B, C, D, and E significantly improves the severity and mortality rate in ICU patients with COVID-19. TRIAL DESIGN: This study is a randomized, single-blinded, two-arm (1:1 ratio) parallel group clinical trial. PARTICIPANTS: We are conducting this study in patients with COVID-19 admitted to intensive care units at the Imam Khomeini Hospital Complex in Tehran, Iran. The inclusion criteria are as follows: (1) aged between 20 and 60 years, (2) both male and female patients with COVID-19, (3) clinical or definitive diagnosis (using polymerase chain reaction (PCR) test), (4) patients have not participated in other clinical trials, and (5) no renal or hepatic abnormalities. The exclusion criteria are as follows: (1) patients with specific and rare viral diseases such as HIV and (2) patients who have been undergoing chemotherapy for the past month. INTERVENTION AND COMPARATOR: Duration of intervention: 7 days from randomization Intervention in the treatment group: Vitamin A 25,000 IU daily Vitamin D 600,000 IU once during study Vitamin E 300 IU twice daily Vitamin C is taken four times per day B vitamins are taken as a daily Soluvit [which included thiamine nitrate 3.1 mg, sodium riboflavin phosphate 4.9 mg (corresponding to vitamin B2 3.6 mg), nicotinamide 40 mg, pyridoxine hydrochloride 4.9 mg (corresponding to vitamin B6 4.0 mg), sodium pantothenate 16.5 mg (corresponding to pantothenic acid 15 mg), sodium ascorbate 113 mg (corresponding to vitamin C 100 mg), biotin 60 µg, folic acid 400 µg, and cyanocobalamin 5 µg] The control group will not receive any supplements or placebo. All supplements are made in Iran except for Soluvit (from Fresenius Kabi, New Zealand). MAIN OUTCOMES: 1. Weight, height, and BMI 2. Severity of pulmonary involvement according to CT scan 3. Respiratory support (invasive or non-invasive) 4. Percentage of oxygen saturation (SpO2 level) 5. Serum levels of WBC, CRP, ESR, IL6, IFN-G, and TNF-α 6. The patient's body temperature 7. The presence or absence of involvement of organs other than the lungs (e.g., heart, liver, kidneys) 8. Duration of hospitalization 9. Mortality rate RANDOMIZATION: At baseline, eligible patients were randomly assigned to a 1:1 ratio to one of two groups: intervention and control. Block randomization is used based on the gender of patients. BLINDING (MASKING): Patients are unaware of being placed in the intervention or control groups after signing consent. All treatment staff will be aware of which group each of the patients is in due to the specific conditions of the ICU and the absence of placebo for the control group. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): The researchers plan to include 60 patients in total, with 30 patients in each group. TRIAL STATUS: This is the first version of the protocol which started on April 2, 2020. Recruitment began April 2, 2020, and is expected to be complete by July 4, 2020. TRIAL REGISTRATION: The Iranian Registry of Clinical Trials IRCT20200319046819N1 . Registered on April 4, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol (Fig. 1, Table 1).


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Dietary Supplements , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Vitamins/administration & dosage , Adult , Ascorbic Acid/administration & dosage , Coronavirus Infections/mortality , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Single-Blind Method , Vitamin A/administration & dosage , Vitamin B Complex/administration & dosage , Vitamin D/administration & dosage
6.
BMJ Open ; 10(7): e039519, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-639482

ABSTRACT

INTRODUCTION: The rapid worldwide spread of COVID-19 has caused a global health crisis. To date, symptomatic supportive care has been the most common treatment. It has been reported that the mechanism of COVID-19 is related to cytokine storms and subsequent immunogenic damage, especially damage to the endothelium and alveolar membrane. Vitamin C (VC), also known as L-ascorbic acid, has been shown to have antimicrobial and immunomodulatory properties. A high dose of intravenous VC (HIVC) was proven to block several key components of cytokine storms, and HIVC showed safety and varying degrees of efficacy in clinical trials conducted on patients with bacterial-induced sepsis and acute respiratory distress syndrome (ARDS). Therefore, we hypothesise that HIVC could be added to the treatment of ARDS and multiorgan dysfunction related to COVID-19. METHODS AND ANALYSIS: The investigators designed a multicentre prospective randomised placebo-controlled trial that is planned to recruit 308 adults diagnosed with COVID-19 and transferred into the intensive care unit. Participants will randomly receive HIVC diluted in sterile water or placebo for 7 days once enrolled. Patients with a history of VC allergy, end-stage pulmonary disease, advanced malignancy or glucose-6-phosphate dehydrogenase deficiency will be excluded. The primary outcome is ventilation-free days within 28 observational days. This is one of the first clinical trials applying HIVC to treat COVID-19, and it will provide credible efficacy and safety data. We predict that HIVC could suppress cytokine storms caused by COVID-19, help improve pulmonary function and reduce the risk of ARDS of COVID-19. ETHICS AND DISSEMINATION: The study protocol was approved by the Ethics Committee of Zhongnan Hospital of Wuhan University (identifiers: Clinical Ethical Approval No. 2020001). Findings of the trial will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: NCT04264533.


Subject(s)
Ascorbic Acid/administration & dosage , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Vitamins/administration & dosage , Administration, Intravenous , Betacoronavirus , China , Coronavirus Infections/complications , Coronavirus Infections/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Hospital Mortality , Humans , Intensive Care Units , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Respiration, Artificial , Severity of Illness Index , Treatment Outcome
7.
Trials ; 21(1): 475, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-505882

ABSTRACT

OBJECTIVES: Primary Objective • To test the efficacy of Hydroxychloroquine (HCQ) (400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days, to complete 14 days) to prevent incident SARS-CoV-2 infection, compared to ascorbic acid among contacts of persons with SARS-CoV-2 infection Secondary objectives • To determine the safety and tolerability of HCQ as SARS-CoV-2 Post-exposure Prophylaxis (PEP) in adults • To test the efficacy of HCQ (400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days, to complete 14 days) to prevent incident SARS-CoV-2 infection 2 weeks after completing therapy, compared to ascorbic acid among contacts of persons with SARS-CoV-2 infection • To test the efficacy of HCQ to shorten the duration of SARS-CoV-2 shedding among those with SARS-CoV-2 infection in the HCQ PEP group • To test the efficacy of HCQ to prevent incident COVID-19 TRIAL DESIGN: This is a randomized, multi-center, placebo-equivalent (ascorbic acid) controlled, blinded study of HCQ PEP for the prevention of SARS-CoV-2 infection in adults exposed to the virus. PARTICIPANTS: This study will enroll up to 2000 asymptomatic adults 18 to 80 years of age (inclusive) at baseline who are close contacts of persons with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 or clinically suspected COVID-19 and a pending SARS-CoV-2 PCR test. This multisite trial will be conducted at seven sites in Seattle (UW), Los Angeles (UCLA), New Orleans (Tulane), Baltimore (UMB), New York City (NYU), Syracuse (SUNY-Upstate), and Boston (BMC). Inclusion criteria Participants are eligible to be included in the study only if all of the following criteria apply: 1.Men or women 18 to 80 years of age inclusive, at the time of signing the informed consent2.Willing and able to provide informed consent3.Had a close contact of a person (index) with known PCR-confirmed SARS-CoV-2 infection or index who is currently being assessed for COVID-19 Close contact is defined as: a.Household contact (i.e., residing with the index case in the 14 days prior to index diagnosis or prolonged exposure within a residence/vehicle/enclosed space without maintaining social distance)b.Medical staff, first responders, or other care persons who cared for the index case without personal protection (mask and gloves)4.Less than 4 days since last exposure (close contact with a person with SARS-CoV-2 infection) to the index case5.Access to device and internet for Telehealth visits6.Not planning to take HCQ in addition to the study medication Exclusion criteria Participants are excluded from the study if any of the following criteria apply: 1.Known hypersensitivity to HCQ or other 4-aminoquinoline compounds2.Currently hospitalized3.Symptomatic with subjective fever, cough, or shortness of breath4.Current medications exclude concomitant use of HCQ5.Concomitant use of other anti-malarial treatment or chemoprophylaxis, including chloroquine, mefloquine, artemether, or lumefantrine.6.History of retinopathy of any etiology7.Psoriasis8.Porphyria9.Known bone marrow disorders with significant neutropenia (polymorphonuclear leukocytes <1500) or thrombocytopenia (<100 K)10.Concomitant use of digoxin, cyclosporin, cimetidine, amiodarone, or tamoxifen11.Known moderate or severe liver disease12.Known long QT syndrome13.Severe renal impairment14.Use of any investigational or non-registered drug or vaccine within 30 days preceding the first dose of the study drugs or planned use during the study period INTERVENTION AND COMPARATOR: Households will be randomized 1:1 (at the level of household), with close contact participants receiving one of the following therapies: •HCQ 400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days •Placebo-like control (ascorbic acid) 500 mg orally daily for 3 days then 250 mg orally daily for 11 days MAIN OUTCOMES: The primary outcome of the study is the incidence of SARS-CoV-2 infection through day 14 among participants who are SARS-CoV-2 negative at baseline by randomization group. RANDOMISATION: Participants will be randomized in a 1:1 ratio to HCQ or ascorbic acid at the level of the household (all eligible participants in 1 household will receive the same intervention). The randomization code and resulting allocation list will be generated and maintained by the Study Statistician. The list will be blocked and stratified by site and contact type (household versus healthcare worker). BLINDING (MASKING): This is a blinded study. HCQ and ascorbic acid will appear similar, and taste will be partially masked as HCQ can be bitter and ascorbic acid will be sour. The participants will be blinded to their randomization group once assigned. Study team members, apart from the Study Pharmacist and the unblinded statistical staff, will be blinded. Laboratory staff are blinded to the group allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size for the study is N=2 000 participants randomized 1:1 to either HCZ (n=1 000) and ascorbic acid (n=1 000). TRIAL STATUS: Protocol version: 1.2 05 April 2020 Recruitment is ongoing, started March 31 and anticipated end date is September 30, 2020. TRIAL REGISTRATION: ClinicalTrials.gov, Protocol Registry Number: NCT04328961 Date of registration: April 1, 2020, retrospectively registered FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Hydroxychloroquine/administration & dosage , Occupational Exposure/adverse effects , Post-Exposure Prophylaxis , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , Ascorbic Acid/administration & dosage , Betacoronavirus/pathogenicity , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Drug Administration Schedule , Female , Humans , Hydroxychloroquine/adverse effects , Incidence , Male , Middle Aged , Multicenter Studies as Topic , Occupational Health , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , United States/epidemiology , Virus Shedding/drug effects , Young Adult
9.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: covidwho-133432

ABSTRACT

BACKGROUND: On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.


Subject(s)
Antioxidants/administration & dosage , Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Diet , Dietary Supplements , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Adiponectin/metabolism , Ascorbic Acid/administration & dosage , Coronavirus Infections/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/metabolism , Flavonoids/administration & dosage , Humans , Interleukin-6/immunology , Interleukin-6/metabolism , Lung Diseases/immunology , Lung Diseases/metabolism , Lung Diseases/therapy , Pandemics , Pneumonia, Viral/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL