Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Medicine (Baltimore) ; 100(19): e25865, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-2191002

ABSTRACT

RATIONALE: Coronavirus disease 2019 (COVID-19) has spread worldwide. It involves multiple organs of infected individuals and encompasses diverse clinical manifestations. We report a case of acute optic neuritis (ON) associated with myelin oligodendrocyte glycoprotein (MOG) antibody possibly induced by COVID-19. PATIENT CONCERNS: A 47-year-old man presented to our clinic with left eye pain and vision loss. Magnetic resonance imaging of the orbit revealed the bilateral high intensity of the optic nerve sheaths. He tested positive for COVID-19 by polymerase chain reaction (PCR) testing on the day of admission but he had no signs of respiratory illness. Laboratory testing revealed that MOG immunoglobulin G (MOG IgG) was positive, but other antibodies including aquaporin-4 were negative. DIAGNOSIS: The patient was diagnosed with MOG antibody-positive acute ON possibly induced by COVID-19. INTERVENTIONS: Steroid pulse therapy consisting of methylprednisolone 1 g/day for a total of 3 days, followed by an oral prednisolone taper was performed. OUTCOMES: His left eye pain was immediately relieved, and his decimal vision improved from 0.03 to 0.1 on the day of discharge. Outpatient follow-up 2 weeks later revealed left a decimal vision of 1.2, and a complete resolution of the left eye pain. LESSONS: Our case indicated that COVID-19 might trigger an autoimmune response that leads to MOG antibody-associated ON, similar to other pathogens that were reported in the past. The treatment response to steroid pulse therapy was preferable following a typical course of MOG antibody-positive ON.


Subject(s)
COVID-19/complications , Myelin-Oligodendrocyte Glycoprotein/immunology , Optic Neuritis/etiology , Optic Neuritis/immunology , Autoantibodies , Glucocorticoids/therapeutic use , Humans , Male , Methylprednisolone/therapeutic use , Middle Aged , Optic Neuritis/drug therapy , SARS-CoV-2
2.
Klin Monbl Augenheilkd ; 239(11): 1305-1314, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2133759

ABSTRACT

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare demyelinating autoimmune disorder of the central nervous system. MOGAD frequently manifests with severe, bilateral, and episodes of recurrent optic neuritis (ON) and is an important differential diagnosis to multiple sclerosis and aquaporin-4-IgG seropositive neuromyelitis optica spectrum disorders. Besides ON, the clinical manifestations of MOGAD commonly include transverse myelitis, acute disseminated encephalomyelitis, and brain stem encephalitis. In this review, we summarize the current knowledge of the neuro-ophthalmological presentation of MOGAD-ON. We describe epidemiological aspects, including the association with COVID-19 and other infections or vaccinations, clinical presentation, and imaging findings of MOGAD-ON in the acute stage and during remission. Furthermore, we report findings on prognosis, treatment response, and changes in ON-unaffected eyes. We touch upon findings on visual acuity, visual fields, and visual evoked potentials, as well as structural changes assessed with optical coherence tomography. Moreover, we explain how to differentiate MOGAD from its differential diagnoses, including other neuroinflammatory disorders (multiple sclerosis and neuromyelitis optica spectrum disorders), but also idiopathic intracranial hypertension.


Subject(s)
COVID-19 , Multiple Sclerosis , Neuromyelitis Optica , Optic Neuritis , Humans , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica/diagnosis , Evoked Potentials, Visual , Autoantibodies , Optic Neuritis/diagnosis , Multiple Sclerosis/diagnosis
3.
Nat Commun ; 13(1): 7254, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2133433

ABSTRACT

Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.


Subject(s)
COVID-19 , Interferon Type I , Humans , Proteomics , SARS-CoV-2 , Interferon-alpha , Antiviral Agents , Autoantibodies
4.
Clin Microbiol Infect ; 28(11): 1417-1421, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2130458

ABSTRACT

BACKGROUND: During the past 2 years, studies on patients with SARS-CoV-2 infection have revealed rare inborn errors of immunity (IEIs) in type interferon (IFN) pathways underlying critical COVID-19 pneumonia. This has provided insights into pathophysiological mechanisms and immune signaling circuits regulating antiviral responses to SARS-CoV-2 and governing the susceptibility to and outcome of SARS-CoV-2 infection in humans. OBJECTIVES: In this review, the current knowledge on IEIs underlying critical COVID-19 is presented, and the clinical implications of these findings for individualized prophylaxis and treatment are outlined. SOURCES: The review is based on a broad literature search, including primarily studies on whole-exome sequencing, and to a lesser extent genome-wide association studies, of patients with critical COVID-19, as well as retrospective descriptive studies of the SARS-CoV-2 disease course in individuals with known IEIs. CONTENT: The review describes the discovery of monogenic IEI in 9 genetic loci related to the production or responses to type I IFN in patients with critical COVID-19 pneumonia and the surprising finding of phenocopies of these, represented by neutralizing autoantibodies to type IFN in a significant proportion of patients with critical pneumonia, particularly in elderly men, and further enriched in patients with lethal disease course. Moreover insights gained from studies on SARS-CoV-2 infection, disease course, and outcome in patients with known IEI is presented. Finally, some hypotheses for a possible genetic basis of autoimmune, inflammatory, and long-term complications of SARS-CoV-2 infection are presented and discussed. IMPLICATIONS: Uncovering IEIs underlying critical COVID-19 or other severe SARS-CoV-2 disease manifestations provides valuable insights into the basic principles of antiviral immune responses and pathophysiology related to SARS-CoV-2 infection. Such knowledge has important clinical implications for identification of susceptible individuals and for diagnosis, prophylaxis, and treatment of patients to reduce disease burden and improve preparedness against viral pandemics with known or emerging viruses in the future.


Subject(s)
COVID-19 , Male , Humans , Aged , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Retrospective Studies , Antiviral Agents/therapeutic use , Interferons , Autoantibodies , Human Genetics
5.
J Clin Lab Anal ; 36(11): e24726, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2127775

ABSTRACT

BACKGROUND: Anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis (MDA5+ DM) is significantly associated with interstitial lung disease (ILD), especially rapidly progressive ILD (RPILD) due to poor prognosis, resulting in high mortality rates. However, the pathogenic mechanism of MDA5+ DM-RPILD is unclear. Although some MDA5+ DM patients have a chronic course of ILD, many do not develop RPILD. Therefore, the related biomarkers for the early diagnosis, disease activity monitoring, and prediction of the outcome of RPILD in MDA5+ DM patients should be identified. Blood-based biomarkers are minimally invasive and can be easily detected. METHODS: Recent relative studies related to blood biomarkers in PubMed were reviewed. RESULTS: An increasing number of studies have demonstrated that dysregulated expression of blood biomarkers related to ILD such as ferritin, Krebs von den Lungen-6 (KL-6), surfactant protein-D (SP-D), and cytokines, and some tumor markers in MDA5+ DM may provide information in disease presence, activity, treatment response, and prognosis. These studies have highlighted the great potentials of blood biomarker values for MDA5+ DM-ILD and MDA5+ DM-RPILD. This review provides an overview of recent studies related to blood biomarkers, besides highlighted protein biomarkers, including antibody (anti-MDA5 IgG subclasses and anti-Ro52 antibody), genetic (exosomal microRNAs and neutrophil extracellular traps related to cell-free DNA), and immune cellular biomarkers in MDA5+ DM, MDA5+ DM-ILD, and MDA5+ DM-RPILD patients, hopefully elucidating the pathogenesis of MDA5+ DM-ILD and providing information on the early diagnosis, disease activity monitoring, and prediction of the outcome of the ILD, especially RPILD. CONCLUSIONS: Therefore, this review may provide insight to guide treatment decisions for MDA5+ DM-RPILD patients and improve outcomes.


Subject(s)
Dermatomyositis , Lung Diseases, Interstitial , Humans , Interferon-Induced Helicase, IFIH1 , Autoantibodies , Disease Progression , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnosis , Biomarkers , Prognosis , Retrospective Studies
6.
Biol Psychiatry ; 92(4): 261-274, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-2122338

ABSTRACT

BACKGROUND: Autoimmune psychosis may be caused by well-characterized anti-neuronal autoantibodies, such as those against the NMDA receptor. However, the presence of additional anti-central nervous system (CNS) autoantibodies in these patients has not been systematically assessed. METHODS: Serum and cerebrospinal fluid (CSF) from patients with schizophreniform and affective syndromes were analyzed for immunoglobulin G anti-CNS autoantibodies using tissue-based assays with indirect immunofluorescence on unfixed murine brain tissue as part of an extended routine clinical practice. After an initial assessment of patients with red flags for autoimmune psychosis (n = 30), tissue-based testing was extended to a routine procedure (n = 89). RESULTS: Based on the findings from all 119 patients, anti-CNS immunoglobulin G autoantibodies against brain tissue were detected in 18% (n = 22) of patients (serum 9%, CSF 18%) following five principal patterns: 1) against vascular structures, most likely endothelial cells (serum 3%, CSF 8%); 2) against granule cells in the cerebellum and/or hippocampus (serum 4%, CSF 6%); 3) against myelinated fibers (serum 2%, CSF 2%); 4) against cerebellar Purkinje cells (serum 0%, CSF 2%); and 5) against astrocytes (serum 1%, CSF 1%). The patients with novel anti-CNS autoantibodies showed increased albumin quotients (p = .026) and white matter changes (p = .020) more frequently than those who tested negative for autoantibodies. CONCLUSIONS: The study demonstrates five novel autoantibody-binding patterns on brain tissue of patients with schizophreniform and affective syndromes. CSF yielded positive findings more frequently than serum analysis. The frequency and spectrum of autoantibodies in these patient groups may be broader than previously thought.


Subject(s)
Autoantibodies , Endothelial Cells , Animals , Brain , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunoglobulin G , Mice , Mood Disorders
7.
Front Immunol ; 13: 981532, 2022.
Article in English | MEDLINE | ID: covidwho-2115313

ABSTRACT

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Autoantibodies , Humans
8.
Front Public Health ; 10: 1007637, 2022.
Article in English | MEDLINE | ID: covidwho-2109884

ABSTRACT

Introduction: Reports of unexpected side effects have accompanied the vaccination of larger proportions of the population against coronavirus disease 2019 (COVID-19), including a few cases of inflammatory myopathy (IM). In a bid to improve understanding of the clinical course of vaccine complications, a systematic review of reported cases of IM following COVID-19 vaccination has been conducted. Methods: The PRISMA guideline 2020 was followed. Two independent investigators systematically searched PubMed and Embase to identify relevant studies published up to July 2022, using the following keywords: COVID-19 Vaccine, inflammatory myositis. The Joanna Briggs Institute critical appraisal tools were used for the risk of bias. Results: A total of 24 articles presenting clinical features of 37 patients with IM following COVID-19 vaccine were identified. Female patients composed 59.5% of cases and 82.4% had been vaccinated with BNT162b2 or ChAdOx1. Onset of symptoms occurred within 2 weeks of the first or second vaccine dose in 29 (85.3%) patients and included muscular weakness in 54.1% and skin rash in 71.4% of patients. Myositis specific autoantibodies (MSAs) and myositis associated autoantibodies (MAAs) were reported in 28 patients. Specific clinical subtypes of myositis, reported in 27 patients, included 22 (81.5%) cases of dermatomyositis (DM) and 3 (11.1%) cases of immune-mediated necrotizing myopathy (IMNM). Following treatment, 32 (86.5%) patients showed improvement on follow-up. Conclusion: COVID-19 vaccine may induce various clinical myositis subtypes and related antibodies. Muscular weakness was the most common presenting symptom. Clinicians should be aware of this unexpected adverse event following COVID-19 vaccination and arrange for appropriate management. Systematic review registration: INPLASY https://inplasy.com/inplasy-2022-9-0084/ [INPLASY202290084].


Subject(s)
COVID-19 , Myositis , Female , Humans , Autoantibodies , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Muscle Weakness , Myositis/etiology , Vaccination
9.
Mult Scler Relat Disord ; 67: 104175, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105622

ABSTRACT

BACKGROUND: Clinical onset of multiple sclerosis (MSpostvacc) and myelin-oligodendrocyte-glycoprotein-antibody-associated disease (MOGADpostvacc) has been reported in association with SARS-CoV-2-vaccination. There is uncertainty as to whether this is causality (denovo disease) or temporal coincidence (manifestation of a preexisting, subclinical neuroinflammation). OBJECTIVES: Comparing the clinical characteristics of MSpostvacc-patients versus patients with MS (PwMS) whose clinical onset occurred independently of vaccination (MSreference). METHODS: Consecutive patients with clinical onset ≤30 days after SARS-CoV-2-vaccination were included. Clinical data, cerebrospinal fluid (CSF) parameters and magnetic resonance imaging (MRI) as well as optical coherence tomography (OCT) data were compared to an age- and sex-matched MSreference-cohort. RESULTS: We identified 5 MSpostvacc and 1 MOGADpostvacc patients who developed their clinical onset ≤ 30 days after SARS-CoV-2-vaccination. Clinical characteristics, CSF, MRI and OCT parameters from MSpostvacc patients were comparable to the MSreference cohort and showed evidence of preexisting subclinical CNS disease. The single case with MOGADpostvacc clearly differed from PwMS in higher CSF cell counts, remission of MRI lesions during follow-up, and absence of oligoclonal bands. CONCLUSIONS: Our case series indicates that MSpostvacc patients showed a rather typical initial manifestation in temporal association with SARS-CoV-2-vaccination and harbored preexisting subclinical neuroinflammation. This argues against the denovo development of MS in this cohort.


Subject(s)
COVID-19 Vaccines , COVID-19 , Demyelinating Diseases , Multiple Sclerosis , Humans , Autoantibodies , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Demyelinating Diseases/chemically induced , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/cerebrospinal fluid , SARS-CoV-2 , Vaccination/adverse effects
10.
J Allergy Clin Immunol ; 150(5): 1059-1073, 2022 11.
Article in English | MEDLINE | ID: covidwho-2105179

ABSTRACT

BACKGROUND: Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. OBJECTIVE: We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. METHODS: Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. RESULTS: A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. CONCLUSIONS: Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.


Subject(s)
COVID-19 , Humans , Child , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral , Autoantibodies
11.
Rev Med Suisse ; 18(802): 2053-2056, 2022 Nov 02.
Article in French | MEDLINE | ID: covidwho-2101104

ABSTRACT

Cerebellar ataxia can be caused by neoplasia, toxics (drugs, heavy metals, alcohol), infection, vascular lesions or auto-immune and paraneoplastic pathologies. Neuroimaging must be performed urgently in case of sudden onset and serologies as well as a lumbar puncture should be performed. Several case reports of ataxia associated with COVID-19 have been published, however the underlying pathogenic mechanisms remain unclear. This is a diagnosis of exclusion when other causes are ruled out and when the ataxia appears simultaneously to COVID-19 infection. We lack data on best management, but the prognosis appears mostly favorable with good functional recovery without any specific treatment. This paper describes the case of a patient who developed a cerebellar ataxia as the only neurological manifestation of a SARS-CoV-2 infection.


Une ataxie cérébelleuse peut être causée par un processus (para)néoplasique, auto-imun, une exposition toxique, une infection ou une lésion vasculaire. Une imagerie doit être réalisée en urgence devant toute atteinte aiguë et le bilan devrait être complété par des sérologies larges et une ponction lombaire. Plusieurs cas d'ataxie liée au Covid-19 ont été décrits, dont le mécanisme étiopathogénique reste incomplètement élucidé, le diagnostic se faisant plutôt par exclusion lorsque les symptômes apparaissent de manière concomitante à l'infection. Des données manquent sur la prise en charge mais le pronostic semble favorable, avec une bonne récupération fonctionnelle. Cet article décrit le cas d'une patiente ayant présenté une ataxie cérébelleuse comme symptôme neurologique isolé contemporain d'une infection à SARS-CoV-2.


Subject(s)
COVID-19 , Cerebellar Ataxia , Humans , Aged , Cerebellar Ataxia/etiology , Cerebellar Ataxia/complications , COVID-19/complications , SARS-CoV-2 , Magnetic Resonance Imaging , Autoantibodies
12.
Nat Rev Nephrol ; 18(12): 743, 2022 12.
Article in English | MEDLINE | ID: covidwho-2096726
13.
Medicine (Baltimore) ; 101(42): e31029, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2087895

ABSTRACT

RATIONALE: Acute encephalopathy is a severe neurological complication of coronavirus disease 2019 (COVID-19). Most cases of acute encephalopathy associated with COVID-19 occur within several weeks of COVID-19 onset. We describe a case series of 6 patients who developed delayed encephalopathy (DE) after COVID-19. PATIENT CONCERNS AND DIAGNOSES: We evaluated patients who recovered from COVID-19 and showed acute disturbance of consciousness or focal neurological deficits without recurrence of pneumonitis. Six patients, 2 females and 4 males, with ages ranging from 65 to 83 years were included. Durations of hospitalization due to COVID-19 were between 25 and 44 days. The severity of COVID-19 was moderate in 5 and severe in 1 patient. Patients were rehospitalized for acute disturbance of consciousness concomitant with postural tremor and, abnormal behavior, hemiplegia, aphasia, or apraxia between 34 and 67 days after the onset of COVID-19. Chest computed tomography showed no exacerbation of pneumonitis. Brain magnetic resonance imaging showed no specific findings except in 1 patient with an acute lacunar infarction. Electroencephalogram demonstrated diffuse slowing in all patients. Repeat electroencephalogram after recovery from encephalopathy demonstrated normal in all patients. One of the 6 patients had cerebrospinal fluid (CSF) pleocytosis. CSF protein levels were elevated in all patients, ranging from 51 to 115 mg/dL. CSF interleukin-6 levels ranged from 2.9 to 10.9 pg/mL. The immunoglobulin index was 0.39 to 0.44. Qlim(alb) < QAlb indicating dysfunction of the blood-brain barrier was observed in all patients. Severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction of CSF was negative in all patients. Neuronal autoantibodies were absent in serum and CSF. INTERVENTIONS AND OUTCOMES: Immunotherapy including steroid pulses was administered to 3 patients; however, symptoms of encephalopathy resolved within several days in all patients, regardless of treatment with immunotherapy, and their consciousness levels were recovered fully. Notably, postural tremor remained for 2 weeks to 7 months. LESSONS: In our patients, DE after COVID-19 was characterized by symptoms of acute encephalopathy accompanied with tremor in the absence of worsening pneumonitis after the fourth week of COVID-19 onset. Our findings indicate blood-brain barrier dysfunction may contribute to the pathogenesis of DE after COVID-19.


Subject(s)
Brain Diseases , COVID-19 , Aged , Aged, 80 and over , Female , Humans , Male , Autoantibodies , Brain Diseases/diagnosis , Brain Diseases/virology , COVID-19/complications , Tremor
14.
Cell Syst ; 13(10): 808-816.e5, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2075982

ABSTRACT

Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which are critical for the structure of antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype when using standard short-read sequencing technologies. Here, we introduce ImmunoTyper-SR, an algorithmic tool for the genotyping and CNV analysis of the germline IGHV genes on Illumina whole-genome sequencing (WGS) data using a combinatorial optimization formulation that resolves ambiguous read mappings. We have validated ImmunoTyper-SR on 12 individuals, whose IGHV allele composition had been independently validated, as well as concordance between WGS replicates from nine individuals. We then applied ImmunoTyper-SR on 585 COVID patients to investigate the associations between IGHV alleles and anti-type I IFN autoantibodies, which were previously associated with COVID-19 severity.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Immunoglobulin Variable Region/genetics , Genotype , COVID-19/genetics , High-Throughput Nucleotide Sequencing , Immunoglobulin Heavy Chains/genetics , Autoantibodies/genetics
15.
Biomolecules ; 12(10)2022 10 15.
Article in English | MEDLINE | ID: covidwho-2071207

ABSTRACT

Thorough understanding of metabolic changes, including lipidome alteration, associated with the development of COVID-19 appears to be crucial, as new types of coronaviruses are still reported. In this study, we analyzed the differences in the plasma phospholipid profiles of the deceased COVID-19 patients, those who recovered and healthy people. Due to identified abnormalities in plasma phospholipid profiles, deceased patients were further divided into two subgroups (D1 and D2). Increased levels of phosphatidylethanolamines (PE), phosphatidylcholines (PC) and phosphatidylserines (PS) were found in the plasma of recovered patients and the majority of deceased patients (first subgroup D1) compared to the control group. However, abundances of all relevant PE, PC and PS species decreased dramatically in the plasma of the second subgroup (D2) of five deceased patients. These patients also had significantly decreased plasma COX-2 activity when compared to the control, in contrast to unchanged and increased COX-2 activity in the plasma of the other deceased patients and recovered patients, respectively. Moreover, these five deceased patients were characterized by abnormally low CRP levels and tremendous increase in LDH levels, which may be the result of other pathophysiological disorders, including disorders of the immune system, liver damage and haemolytic anemia. In addition, an observed trend to decrease the autoantibodies against oxidative modifications of low-density lipoprotein (oLAb) titer in all, especially in deceased patients, indicate systemic oxidative stress and altered immune system that may have prognostic value in COVID-19.


Subject(s)
COVID-19 , Phospholipids , Humans , Phospholipids/metabolism , Phosphatidylethanolamines/metabolism , Lipidomics , Phosphatidylserines/metabolism , Cyclooxygenase 2 , Phosphatidylcholines , Lipoproteins, LDL , Autoantibodies
16.
J Infect Dev Ctries ; 16(9): 1530-1532, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066667

ABSTRACT

INTRODUCTION: COVID-19 is an infectious disease, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and there have been outbreaks worldwide. The presentation may include unspecific and mild symptoms, myalgia, headaches, high fever, dry cough, severe dyspnea and acute respiratory distress syndrome (ARDS). CASE STUDY: We present a rare case of microscopic polyangiitis (MPA) with interstitial lung disease and without renal involvement misdiagnosed as COVID-19. CONCLUSIONS: Differential diagnosis of COVID-19 is extremely important, and must be correctly identified in order to proceed with correct treatment.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Autoantibodies , COVID-19/diagnosis , Humans , SARS-CoV-2 , Tomography, X-Ray Computed
17.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: covidwho-2066545

ABSTRACT

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak and COVID-19 vaccination, new-onset and relapsed clinical cases of membranous nephropathy (MN) have been reported. However, their clinical characteristics and pathogenesis remained unclear. In this article, we collected five cases of MN associated with SARS-CoV-2 infection and 37 related to COVID-19 vaccination. Of these five cases, four (4/5, 80%) had acute kidney injury (AKI) at disease onset. Phospholipase A2 receptor (PLA2R) in kidney tissue was negative in three (3/5, 60%) patients, and no deposition of virus particles was measured among all patients. Conventional immunosuppressive drugs could induce disease remission. The underlying pathogenesis included the subepithelial deposition of viral antigens and aberrant immune response. New-onset and relapsed MN after COVID-19 vaccination generally occurred within two weeks after the second dose of vaccine. Almost 27% of patients (10/37) suffered from AKI. In total, 11 of 14 cases showed positive for PLA2R, and 20 of 26 (76.9%) presented with an elevated serum phospholipase A2 receptor antibody (PLA2R-Ab), in which 8 cases exceeded 50 RU/mL. Conventional immunosuppressive medications combined with rituximab were found more beneficial to disease remission for relapsed patients. In contrast, new-onset patients responded to conservative treatment. Overall, most patients (24/37, 64.9%) had a favorable prognosis. Cross immunity and enhanced immune response might contribute to explaining the mechanisms of MN post COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Glomerulonephritis, Membranous , Humans , Acute Kidney Injury , Antigens, Viral , Autoantibodies , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Glomerulonephritis, Membranous/epidemiology , Receptors, Phospholipase A2 , Rituximab/therapeutic use , SARS-CoV-2 , Vaccination/adverse effects , Recurrence
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066128

ABSTRACT

COVID-19 patients often develop coagulopathies including microclotting, thrombotic strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (ß2GPI), phosphodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor (vWF). Different combinations of autoantibodies associate with different coagulopathies. Previous research revealed similarities between proteins with blood clotting functions and SARS-CoV-2 proteins, adenovirus, and bacterial proteins associated with moderate-to-severe COVID-19 infections. This study investigated whether polyclonal antibodies (mainly goat and rabbit) against these viruses and bacteria recognize human blood-related proteins. Antibodies against SARS-CoV-2 and adenovirus recognized vWF, PDE and PF4 and SARS-CoV-2 antibodies also recognized additional antigens. Most bacterial antibodies tested (group A streptococci [GAS], staphylococci, Escherichia coli [E. coli], Klebsiella pneumoniae, Clostridia, and Mycobacterium tuberculosis) cross-reacted with CL and PF4. while GAS antibodies also bound to F2, Factor VIII, Factor IX, and vWF, and E. coli antibodies to PDE. All cross-reactive interactions involved antibody-antigen binding constants smaller than 100 nM. Since most COVID-19 coagulopathy patients display autoantibodies against vWF, PDE and PF4 along with CL, combinations of viral and bacterial infections appear to be necessary to initiate their autoimmune coagulopathies.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Adenoviridae , Animals , Antibodies, Bacterial , Antigens, Bacterial , Autoantibodies , Bacterial Proteins , Blood Coagulation Factors , Capsid Proteins , Cardiolipins , Escherichia coli/metabolism , Factor IX , Factor VIII , Humans , Phosphoric Diester Hydrolases , Platelet Factor 4/metabolism , Prothrombin , Rabbits , SARS-CoV-2 , Serum Albumin , beta 2-Glycoprotein I , von Willebrand Factor
19.
Sci Adv ; 8(40): eabn3777, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2063966

ABSTRACT

Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation, and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme 2 (ACE2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized patients with COVID-19 developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or receptor-binding domain (RBD), to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin II , Autoantibodies , Blood Pressure , Epitopes/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
20.
Rheumatol Int ; 42(12): 2267-2276, 2022 12.
Article in English | MEDLINE | ID: covidwho-2059804

ABSTRACT

Dermatomyositis is a rare, type I interferon-driven autoimmune disease, which can affect muscle, skin and internal organs (especially the pulmonary system). In 2021, we have noted an increase in new-onset dermatomyositis compared to the years before the SARS-CoV-2 pandemic in our center. We present four cases of new-onset NXP2 and/or MDA5 positive dermatomyositis shortly after SARS-CoV-2 infection or vaccination. Three cases occurred within days after vaccination with Comirnaty and one case after SARS-CoV-2 infection. All patients required intensive immunosuppressive treatment. MDA5 antibodies could be detected in three patients and NXP2 antibodies were found in two patients (one patient was positive for both antibodies). In this case-based systematic review, we further analyze and discuss the literature on SARS-CoV-2 and associated dermatomyositis. In the literature, sixteen reports (with a total of seventeen patients) of new-onset dermatomyositis in association with a SARS-CoV-2 infection or vaccination were identified. Ten cases occurred after infection and seven after vaccination. All vaccination-associated cases were seen in mRNA vaccines. The reported antibodies included for instance MDA5, NXP2, Mi-2 and TIF1γ. The reviewed literature and our cases suggest that SARS-CoV-2 infection and vaccination may be considered as a potential trigger of interferon-pathway. Consequently, this might serve as a stimulus for the production of dermatomyositis-specific autoantibodies like MDA5 and NXP2 which are closely related to viral defense or viral RNA interaction supporting the concept of infection and vaccination associated dermatomyositis.


Subject(s)
COVID-19 , Dermatomyositis , Interferon Type I , Autoantibodies , COVID-19/prevention & control , Humans , RNA, Viral , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL