Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Viruses ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580419

ABSTRACT

A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.


Subject(s)
Antibodies, Viral/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/immunology , COVID-19 Serological Testing , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Protein Array Analysis , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Viruses/classification
2.
J Clin Immunol ; 41(8): 1733-1744, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525558

ABSTRACT

BACKGROUND: It is important to predict which patients infected by SARS-CoV-2 are at higher risk of life-threatening COVID-19. Several studies suggest that neutralizing auto-antibodies (auto-Abs) against type I interferons (IFNs) are predictive of critical COVID-19 pneumonia. OBJECTIVES: We aimed to test for auto-Abs to type I IFN and describe the main characteristics of COVID-19 patients admitted to intensive care depending on whether or not these auto-Abs are present. METHODS: Retrospective analysis of all COVID-19 patients admitted to an intensive care unit (ICU) in whom samples were available, from March 2020 to March 2021, in Barcelona, Spain. RESULTS: A total of 275 (70.5%) out of 390 patients admitted to ICU were tested for type I IFNs auto-antibodies (α2 and/or ω) by ELISA, being positive in 49 (17.8%) of them. Blocking activity of plasma diluted 1/10 for high concentrations (10 ng/mL) of IFNs was proven in 26 (9.5%) patients. Almost all the patients with neutralizing auto-Abs were men (92.3%). ICU patients with positive results for neutralizing IFNs auto-Abs did not show relevant differences in demographic, comorbidities, clinical features, and mortality, when compared with those with negative results. Nevertheless, some laboratory tests (leukocytosis, neutrophilia, thrombocytosis) related with COVID-19 severity, as well as acute kidney injury (17 [65.4%] vs. 100 [40.2%]; p = 0.013) were significantly higher in patients with auto-Abs. CONCLUSION: Auto-Abs neutralizing high concentrations of type I IFNs were found in 9.5% of patients admitted to the ICU for COVID-19 pneumonia in a hospital in Barcelona. These auto-Abs should be tested early upon diagnosis of SARS-CoV-2 infection, as they account for a significant proportion of life-threatening cases.


Subject(s)
Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2 , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies
3.
PLoS One ; 16(9): e0257016, 2021.
Article in English | MEDLINE | ID: covidwho-1484849

ABSTRACT

BACKGROUND: Activation of the immune system is implicated in the Post-Acute Sequelae after SARS-CoV-2 infection (PASC) but the mechanisms remain unknown. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (Ang II) resulting in decreased activation of the AT1 receptor and decreased immune system activation. We hypothesized that autoantibodies against ACE2 may develop after SARS-CoV-2 infection, as anti-idiotypic antibodies to anti-spike protein antibodies. METHODS AND FINDINGS: We tested plasma or serum for ACE2 antibodies in 67 patients with known SARS-CoV-2 infection and 13 with no history of infection. None of the 13 patients without history of SARS-CoV-2 infection and 1 of the 20 outpatients that had a positive PCR test for SARS-CoV-2 had levels of ACE2 antibodies above the cutoff threshold. In contrast, 26/32 (81%) in the convalescent group and 14/15 (93%) of patients acutely hospitalized had detectable ACE2 antibodies. Plasma from patients with antibodies against ACE2 had less soluble ACE2 activity in plasma but similar amounts of ACE2 protein compared to patients without ACE2 antibodies. We measured the capacity of the samples to inhibit ACE2 enzyme activity. Addition of plasma from patients with ACE2 antibodies led to decreased activity of an exogenous preparation of ACE2 compared to patients that did not have antibodies. CONCLUSIONS: Many patients with a history of SARS-CoV-2 infection have antibodies specific for ACE2. Patients with ACE2 antibodies have lower activity of soluble ACE2 in plasma. Plasma from these patients also inhibits exogenous ACE2 activity. These findings are consistent with the hypothesis that ACE2 antibodies develop after SARS-CoV-2 infection and decrease ACE2 activity. This could lead to an increase in the abundance of Ang II, which causes a proinflammatory state that triggers symptoms of PASC.


Subject(s)
Autoantibodies/blood , COVID-19/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/blood , Angiotensin II/blood , Angiotensin II/immunology , Angiotensin-Converting Enzyme 2/genetics , Autoantibodies/immunology , Autoantibodies/isolation & purification , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Peptidyl-Dipeptidase A/blood , Receptor, Angiotensin, Type 1/blood , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/immunology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
5.
J Autoimmun ; 124: 102728, 2021 11.
Article in English | MEDLINE | ID: covidwho-1440155

ABSTRACT

Extremely rare reactions characterized by thrombosis and thrombocytopenia have been described in subjects that received ChAdOx1 nCoV-19 vaccination 5-16 days earlier. Although patients with vaccine-induced thrombotic thrombocytopenia (VITT) have high levels of antibodies to platelet factor 4 (PF4)-polyanion complexes, the exact mechanism of the development of thrombosis is still unknown. Here we reported serum studies as well as proteomics and genomics analyses demonstrating a massive complement activation potentially linked to the presence of anti-PF4 antibodies in a patient with severe VITT. At admission, complement activity of the classical and lectin pathways were absent (0% for both) with normal levels of the alternative pathway (73%) in association with elevated levels of the complement activation marker sC5b-9 (630 ng/mL [n.v. 139-462 ng/mL]) and anti-PF4 IgG (1.918 OD [n.v. 0.136-0.300 OD]). The immunoblotting analysis of C2 showed the complete disappearance of its normal band at 110 kDa. Intravenous immunoglobulin treatment allowed to recover complement activity of the classical pathway (91%) and lectin pathway (115%), to reduce levels of sC5b-9 (135 ng/mL) and anti-PF4 IgG (0.681 OD) and to normalize the C2 pattern at immunoblotting. Proteomics and genomics analyses in addition to serum studies showed that the absence of complement activity during VITT was not linked to alterations of the C2 gene but rather to a strong complement activation leading to C2 consumption. Our data in a single patient suggest monitoring complement parameters in other VITT patients considering also the possibility to target complement activation with specific drugs.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Complement C2 , Complement Membrane Attack Complex , Complement Pathway, Classical , Complement Pathway, Mannose-Binding Lectin , Purpura, Thrombotic Thrombocytopenic , SARS-CoV-2 , Adult , Autoantibodies/blood , COVID-19 Vaccines/administration & dosage , Complement C2/genetics , Complement C2/metabolism , Complement Membrane Attack Complex/genetics , Complement Membrane Attack Complex/metabolism , Complement Pathway, Classical/drug effects , Complement Pathway, Classical/genetics , Complement Pathway, Mannose-Binding Lectin/drug effects , Complement Pathway, Mannose-Binding Lectin/genetics , Female , Humans , Platelet Factor 4/blood , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/chemically induced , Purpura, Thrombotic Thrombocytopenic/genetics
6.
J Clin Immunol ; 41(8): 1733-1744, 2021 11.
Article in English | MEDLINE | ID: covidwho-1439739

ABSTRACT

BACKGROUND: It is important to predict which patients infected by SARS-CoV-2 are at higher risk of life-threatening COVID-19. Several studies suggest that neutralizing auto-antibodies (auto-Abs) against type I interferons (IFNs) are predictive of critical COVID-19 pneumonia. OBJECTIVES: We aimed to test for auto-Abs to type I IFN and describe the main characteristics of COVID-19 patients admitted to intensive care depending on whether or not these auto-Abs are present. METHODS: Retrospective analysis of all COVID-19 patients admitted to an intensive care unit (ICU) in whom samples were available, from March 2020 to March 2021, in Barcelona, Spain. RESULTS: A total of 275 (70.5%) out of 390 patients admitted to ICU were tested for type I IFNs auto-antibodies (α2 and/or ω) by ELISA, being positive in 49 (17.8%) of them. Blocking activity of plasma diluted 1/10 for high concentrations (10 ng/mL) of IFNs was proven in 26 (9.5%) patients. Almost all the patients with neutralizing auto-Abs were men (92.3%). ICU patients with positive results for neutralizing IFNs auto-Abs did not show relevant differences in demographic, comorbidities, clinical features, and mortality, when compared with those with negative results. Nevertheless, some laboratory tests (leukocytosis, neutrophilia, thrombocytosis) related with COVID-19 severity, as well as acute kidney injury (17 [65.4%] vs. 100 [40.2%]; p = 0.013) were significantly higher in patients with auto-Abs. CONCLUSION: Auto-Abs neutralizing high concentrations of type I IFNs were found in 9.5% of patients admitted to the ICU for COVID-19 pneumonia in a hospital in Barcelona. These auto-Abs should be tested early upon diagnosis of SARS-CoV-2 infection, as they account for a significant proportion of life-threatening cases.


Subject(s)
Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2 , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies
7.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1434875

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
8.
Transfusion ; 61(11): 3267-3271, 2021 11.
Article in English | MEDLINE | ID: covidwho-1434847

ABSTRACT

BACKGROUND: Large clinical trials have demonstrated the overall safety of vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, reports have emerged of autoimmune phenomena, including vaccine-associated myocarditis, immune thrombocytopenia, and immune thrombotic thrombocytopenia. CASE PRESENTATION: Here we present a novel case of a young woman who developed life-threatening autoimmune hemolytic anemia (AIHA) after her first dose of a SARS-CoV-2 mRNA vaccine. Notably, initial direct antiglobulin testing was negative using standard anti-IgG reagents, which are "blind" to certain immunoglobulin (IgG) isotypes. Further testing using an antiglobulin reagent that detects all IgG isotypes was strongly positive and confirmed the diagnosis of AIHA. The patient required transfusion with 13 units of red blood cells, as well as treatment with corticosteroids, rituximab, mycophenolate mofetil, and immune globulin. CONCLUSION: As efforts to administer SARS-CoV-2 vaccines continue globally, clinicians must be aware of potential autoimmune sequelae of these therapies.


Subject(s)
Anemia, Hemolytic, Autoimmune/chemically induced , Anemia, Hemolytic, Autoimmune/therapy , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Adrenal Cortex Hormones/administration & dosage , Adult , Anemia, Hemolytic, Autoimmune/blood , Autoantibodies/blood , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Erythrocyte Transfusion , Female , Humans , Immunoglobulin G/blood , Immunoglobulins/administration & dosage , Mycophenolic Acid/administration & dosage , Rituximab/administration & dosage
9.
Front Immunol ; 12: 718744, 2021.
Article in English | MEDLINE | ID: covidwho-1417083

ABSTRACT

COVID-19 associated multisystem inflammatory syndrome (MIS) is a rare condition mostly affecting children but also adults (MIS-A). Although severe systemic inflammation and multiorgan dysfunction are hallmarks of the syndrome, the underlying pathogenesis is unclear. We aimed to provide novel immunological and genetic descriptions of MIS-A patients. Cytokine responses (IL-6, IL-1ß, TNFα, CXCL10, type I, II and III interferons) following SARS-CoV-2 infection of peripheral blood mononuclear cells in vitro were analyzed as well as antibodies against IFNα and IFNω (by ELISA) in patients and healthy controls. We also performed whole exome sequencing (WES) of patient DNA. A total of five patients (ages 19, 23, 33, 38, 50 years) were included. The patients shared characteristic features, although organ involvement and the time course of disease varied slightly. SARS-CoV-2 in vitro infection of patient PBMCs revealed impaired type I and III interferon responses and reduced CXCL10 expression, whereas production of proinflammatory cytokines were less affected, compared to healthy controls. Presence of interferon autoantibodies was not detected. Whole exome sequencing analysis of patient DNA revealed 12 rare potentially disease-causing variants in genes related to autophagy, classical Kawasaki disease, restriction factors and immune responses. In conclusion, we observed an impaired production of type I and III interferons in response to SARS-CoV-2 infection and detected several rare potentially disease-causing gene variants potentially contributing to MIS-A.


Subject(s)
COVID-19/pathology , Cytokines/blood , Interferon-alpha/biosynthesis , Interferons/biosynthesis , Systemic Inflammatory Response Syndrome/pathology , Adult , Autoantibodies/blood , Chemokine CXCL10/biosynthesis , Comorbidity , Exome/genetics , Female , Humans , Interferon-alpha/immunology , Interferons/immunology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Whole Exome Sequencing , Young Adult
10.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
13.
Life Sci Alliance ; 4(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1404295

ABSTRACT

High levels of autoimmune antibodies are observed in COVID-19 patients but their specific contribution to disease severity and clinical manifestations remains poorly understood. We performed a retrospective study of 115 COVID-19 hospitalized patients with different degrees of severity to analyze the generation of autoimmune antibodies to common antigens: a lysate of erythrocytes, the lipid phosphatidylserine (PS) and DNA. High levels of IgG autoantibodies against erythrocyte lysates were observed in a large percentage (up to 36%) of patients. Anti-DNA and anti-PS antibodies determined upon hospital admission correlated strongly with later development of severe disease, showing a positive predictive value of 85.7% and 92.8%, respectively. Patients with positive values for at least one of the two autoantibodies accounted for 24% of total severe cases. Statistical analysis identified strong correlations between anti-DNA antibodies and markers of cell injury, coagulation, neutrophil levels and erythrocyte size. Anti-DNA and anti-PS autoantibodies may play an important role in the pathogenesis of COVID-19 and could be developed as predictive biomarkers for disease severity and specific clinical manifestations.


Subject(s)
Antibodies, Antinuclear/immunology , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/blood , Autoantibodies/blood , Biomarkers , DNA/chemistry , DNA/immunology , Erythrocytes/immunology , Female , Humans , Male , Middle Aged , Phosphatidylserines/immunology , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
14.
PLoS One ; 16(9): e0257016, 2021.
Article in English | MEDLINE | ID: covidwho-1388955

ABSTRACT

BACKGROUND: Activation of the immune system is implicated in the Post-Acute Sequelae after SARS-CoV-2 infection (PASC) but the mechanisms remain unknown. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (Ang II) resulting in decreased activation of the AT1 receptor and decreased immune system activation. We hypothesized that autoantibodies against ACE2 may develop after SARS-CoV-2 infection, as anti-idiotypic antibodies to anti-spike protein antibodies. METHODS AND FINDINGS: We tested plasma or serum for ACE2 antibodies in 67 patients with known SARS-CoV-2 infection and 13 with no history of infection. None of the 13 patients without history of SARS-CoV-2 infection and 1 of the 20 outpatients that had a positive PCR test for SARS-CoV-2 had levels of ACE2 antibodies above the cutoff threshold. In contrast, 26/32 (81%) in the convalescent group and 14/15 (93%) of patients acutely hospitalized had detectable ACE2 antibodies. Plasma from patients with antibodies against ACE2 had less soluble ACE2 activity in plasma but similar amounts of ACE2 protein compared to patients without ACE2 antibodies. We measured the capacity of the samples to inhibit ACE2 enzyme activity. Addition of plasma from patients with ACE2 antibodies led to decreased activity of an exogenous preparation of ACE2 compared to patients that did not have antibodies. CONCLUSIONS: Many patients with a history of SARS-CoV-2 infection have antibodies specific for ACE2. Patients with ACE2 antibodies have lower activity of soluble ACE2 in plasma. Plasma from these patients also inhibits exogenous ACE2 activity. These findings are consistent with the hypothesis that ACE2 antibodies develop after SARS-CoV-2 infection and decrease ACE2 activity. This could lead to an increase in the abundance of Ang II, which causes a proinflammatory state that triggers symptoms of PASC.


Subject(s)
Autoantibodies/blood , COVID-19/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/blood , Angiotensin II/blood , Angiotensin II/immunology , Angiotensin-Converting Enzyme 2/genetics , Autoantibodies/immunology , Autoantibodies/isolation & purification , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Peptidyl-Dipeptidase A/blood , Receptor, Angiotensin, Type 1/blood , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/immunology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
16.
J Med Virol ; 94(1): 54-62, 2022 01.
Article in English | MEDLINE | ID: covidwho-1370368

ABSTRACT

Coronavirus disease 2019 (COVID-19) is still propagating a year after the start of the pandemic. Besides the complications patients face during the COVID-19 disease period, there is an accumulating body of evidence concerning the late-onset complications of COVID-19, of which autoimmune manifestations have attracted remarkable attention from the first months of the pandemic. Autoimmune hemolytic anemia, immune thrombocytopenic purpura, autoimmune thyroid diseases, Kawasaki disease, Guillain-Barre syndrome, and the detection of autoantibodies are the cues to the discovery of the potential of COVID-19 in inducing autoimmunity. Clarification of the pathophysiology of COVID-19 injuries to the host, whether it is direct viral injury or autoimmunity, could help to develop appropriate treatment.


Subject(s)
Autoimmune Diseases/epidemiology , Autoimmune Diseases/immunology , Autoimmunity/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Autoantibodies/blood , Autoantibodies/immunology , Autoimmune Diseases/virology , COVID-19/immunology , Humans
17.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1367379

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
18.
Viruses ; 13(8)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1355048

ABSTRACT

COVID-19 convalescent plasma (CCP) is currently under investigation for both treatment and post-exposure prophylaxis. The active component of CCP mediating improved outcome is commonly reported as specific antibodies, particularly neutralizing antibodies, with clinical efficacy characterized according to the level or antibody affinity. In this review, we highlight the potential role of additional factors in CCP that can be either beneficial (e.g., AT-III, alpha-1 AT, ACE2+ extracellular vesicles) or detrimental (e.g., anti-ADAMTS13, anti-MDA5 or anti-interferon autoantibodies, pro-coagulant extracellular vesicles). Variations in these factors in CCP may contribute to varied outcomes in patients with COVID-19 and undergoing CCP therapy. We advise careful, retrospective investigation of such co-factors in randomized clinical trials that use fresh frozen plasma in control arms. Nevertheless, it might be difficult to establish a causal link between these components and outcome, given that CCP is generally safe and neutralizing antibody effects may predominate.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/therapy , SARS-CoV-2/immunology , Anti-Inflammatory Agents/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Autoantibodies/blood , Blood Coagulation Factor Inhibitors/blood , Blood Coagulation Factors/analysis , Cross Reactions , Extracellular Vesicles , Humans , Immunization, Passive/adverse effects , Immunologic Factors/blood , Immunosuppressive Agents/blood
19.
N Engl J Med ; 385(18): 1680-1689, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1352005

ABSTRACT

BACKGROUND: Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a new syndrome associated with the ChAdOx1 nCoV-19 adenoviral vector vaccine against severe acute respiratory syndrome coronavirus 2. Data are lacking on the clinical features of and the prognostic criteria for this disorder. METHODS: We conducted a prospective cohort study involving patients with suspected VITT who presented to hospitals in the United Kingdom between March 22 and June 6, 2021. Data were collected with the use of an anonymized electronic form, and cases were identified as definite or probable VITT according to prespecified criteria. Baseline characteristics and clinicopathological features of the patients, risk factors, treatment, and markers of poor prognosis were determined. RESULTS: Among 294 patients who were evaluated, we identified 170 definite and 50 probable cases of VITT. All the patients had received the first dose of ChAdOx1 nCoV-19 vaccine and presented 5 to 48 days (median, 14) after vaccination. The age range was 18 to 79 years (median, 48), with no sex preponderance and no identifiable medical risk factors. Overall mortality was 22%. The odds of death increased by a factor of 2.7 (95% confidence interval [CI], 1.4 to 5.2) among patients with cerebral venous sinus thrombosis, by a factor of 1.7 (95% CI, 1.3 to 2.3) for every 50% decrease in the baseline platelet count, by a factor of 1.2 (95% CI, 1.0 to 1.3) for every increase of 10,000 fibrinogen-equivalent units in the baseline d-dimer level, and by a factor of 1.7 (95% CI, 1.1 to 2.5) for every 50% decrease in the baseline fibrinogen level. Multivariate analysis identified the baseline platelet count and the presence of intracranial hemorrhage as being independently associated with death; the observed mortality was 73% among patients with platelet counts below 30,000 per cubic millimeter and intracranial hemorrhage. CONCLUSIONS: The high mortality associated with VITT was highest among patients with a low platelet count and intracranial hemorrhage. Treatment remains uncertain, but identification of prognostic markers may help guide effective management. (Funded by the Oxford University Hospitals NHS Foundation Trust.).


Subject(s)
COVID-19 Vaccines/adverse effects , Purpura, Thrombocytopenic, Idiopathic/etiology , Thrombosis/etiology , Adolescent , Adult , Aged , Anticoagulants , Autoantibodies/blood , COVID-19/prevention & control , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Intracranial Hemorrhages/etiology , Intracranial Hemorrhages/mortality , Male , Middle Aged , Multivariate Analysis , Platelet Count , Platelet Factor 4/immunology , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/mortality , Purpura, Thrombocytopenic, Idiopathic/therapy , Risk Factors , Thrombosis/drug therapy , Thrombosis/mortality , United Kingdom/epidemiology , Young Adult
20.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1345702

ABSTRACT

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Adult , Aged , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Autoantibodies/blood , COVID-19/blood , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Interferon Type I/pharmacology , Longitudinal Studies , Male , Middle Aged , Nasal Cavity/immunology , Nasal Cavity/virology , Prospective Studies , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Viral Load/immunology , Virus Replication/drug effects , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...