Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add filters

Document Type
Year range
1.
Curr Opin Immunol ; 72: 286-297, 2021 10.
Article in English | MEDLINE | ID: covidwho-1606955

ABSTRACT

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.


Subject(s)
COVID-19/immunology , Candidiasis, Cutaneous/immunology , Polyendocrinopathies, Autoimmune/immunology , T-Lymphocytes/immunology , Transcription Factors/genetics , Animals , Autoimmunity , Bronchiectasis , COVID-19/epidemiology , COVID-19/genetics , Candidiasis, Cutaneous/epidemiology , Candidiasis, Cutaneous/genetics , Clonal Selection, Antigen-Mediated/genetics , Disease Susceptibility , Humans , Immune Tolerance/genetics , Polyendocrinopathies, Autoimmune/epidemiology , Polyendocrinopathies, Autoimmune/genetics
2.
Mol Med ; 27(1): 160, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1582121

ABSTRACT

COVID-19 clinical presentation differs considerably between individuals, ranging from asymptomatic, mild/moderate and severe disease which in some cases are fatal or result in long-term effects. Identifying immune mechanisms behind severe disease development informs screening strategies to predict who are at greater risk of developing life-threatening complications. However, to date clear prognostic indicators of individual risk of severe or long COVID remain elusive. Autoantibodies recognize a range of self-antigens and upon antigen recognition and binding, important processes involved in inflammation, pathogen defence and coagulation are modified. Recent studies report a significantly higher prevalence of autoantibodies that target immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins in COVID-19 patients experiencing severe disease compared to those who experience mild or asymptomatic infections. Here we discuss the diverse impacts of autoantibodies on immune processes and associations with severe COVID-19 disease.


Subject(s)
Autoantibodies/immunology , Autoantibodies/metabolism , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Autoimmunity/physiology , COVID-19/metabolism , Humans , SARS-CoV-2/metabolism
4.
Bioessays ; 43(12): e2100158, 2021 12.
Article in English | MEDLINE | ID: covidwho-1525412

ABSTRACT

Severe COVID-19 is often accompanied by coagulopathies such as thrombocytopenia and abnormal clotting. Rarely, such complications follow SARS-CoV-2 vaccination. The cause of these coagulopathies is unknown. It is hypothesized that coagulopathies accompanying SARS-CoV-2 infections and vaccinations result from bacterial co-infections that synergize with virus-induced autoimmunity due to antigenic mimicry of blood proteins by both bacterial and viral antigens. Coagulopathies occur mainly in severe COVID-19 characterized by bacterial co-infections with Streptococci, Staphylococci, Klebsiella, Escherichia coli, and Acinetobacter baumannii. These bacteria express unusually large numbers of antigens mimicking human blood antigens, as do both SARS-CoV-2 and adenoviruses. Bacteria mimic cardiolipin, prothrombin, albumin, and platelet factor 4 (PF4). SARS-CoV-2 mimics complement factors, Rh antigens, platelet phosphodiesterases, Factors IX and X, von Willebrand Factor (VWF), and VWF protease ADAMTS13. Adenoviruses mimic prothrombin and platelet factor 4. Bacterial prophylaxis, avoidance of vaccinating bacterially infected individuals, and antigen deletion for vaccines may reduce coagulopathy risk. Also see the video abstract here: https://youtu.be/zWDOsghrPg8.


Subject(s)
COVID-19 , Coinfection , Autoantibodies , Autoimmunity , Bacteria , COVID-19 Vaccines , Cardiolipins , Carrier Proteins , Humans , Platelet Factor 4 , Prothrombin , SARS-CoV-2
5.
Front Endocrinol (Lausanne) ; 12: 746602, 2021.
Article in English | MEDLINE | ID: covidwho-1477814

ABSTRACT

Background: Some studies have indicated that interferon (IFN) may be valuable in COVID-19. We aimed to evaluate the impact of short-term IFN on incident thyroid dysfunction and autoimmunity among COVID-19 survivors. Methods: We included consecutive adults without known thyroid disorder admitted to Queen Mary Hospital for COVID-19 from July 2020 to January 2021 who had thyroid function tests (TFTs) and anti-thyroid antibodies measured both on admission and at three months. Results: 226 patients were included (median age 55.0 years; 49.6% men): 135 were IFN-treated. There tended to be more abnormal TFTs upon reassessment in IFN-treated patients (8.1% vs 2.2%, p=0.080). 179 patients (65.4% IFN-treated) had a complete reassessment of anti-thyroid antibodies. There were significant increases in titres of both anti-thyroid peroxidase antibodies (anti-TPO: baseline 29.21 units [IQR: 14.97 - 67.14] vs reassessment 34.30 units [IQR: 18.82 - 94.65], p<0.001) and anti-thyroglobulin antibodies (anti-Tg: baseline 8.23 units [IQR: 5.40 - 18.44] vs reassessment 9.14 units [IQR: 6.83 - 17.17], p=0.001) in the IFN-treated group but not IFN-naïve group. IFN treatment (standardised beta 0.245, p=0.001) was independently associated with changes in anti-TPO titre. Of the 143 patients negative for anti-TPO at baseline, 8 became anti-TPO positive upon reassessment (seven IFN-treated; one IFN-naïve). Incident anti-TPO positivity was more likely to be associated with abnormal TFTs upon reassessment (phi 0.188, p=0.025). Conclusion: IFN for COVID-19 was associated with modest increases in anti-thyroid antibody titres, and a trend of more incident anti-TPO positivity and abnormal TFTs during convalescence. Our findings suggest that clinicians monitor the thyroid function and anti-thyroid antibodies among IFN-treated COVID-19 survivors, and call for further follow-up studies regarding the clinical significance of these changes.


Subject(s)
Autoimmunity/drug effects , COVID-19/drug therapy , COVID-19/immunology , Interferon beta-1b/adverse effects , Interferon beta-1b/therapeutic use , Thyroid Diseases/chemically induced , Thyroid Function Tests , Thyroid Gland/drug effects , Adult , Antibodies/analysis , Cohort Studies , Female , Follow-Up Studies , Humans , Immunoglobulins, Thyroid-Stimulating/analysis , Male , Middle Aged , Survivors , Thyroid Diseases/immunology , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
6.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470549

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
7.
Front Immunol ; 12: 708848, 2021.
Article in English | MEDLINE | ID: covidwho-1468339

ABSTRACT

Impressive efforts have been made by researchers worldwide in the development of target vaccines against the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and in improving the management of immunomodulating agents. Currently, different vaccine formulations, such as viral vector, mRNA, and protein-based, almost all directed toward the spike protein that includes the domain for receptor binding, have been approved. Although data are not conclusive, patients affected by autoimmune rheumatic diseases (ARDs) seem to have a slightly higher disease prevalence, risk of hospitalization, and death from coronavirus disease-2019 (COVID-19) than the general population. Therefore, ARD patients, under immunosuppressive agents, have been included among the priority target groups for vaccine administration. However, specific cautions are needed to optimize vaccine safety and effectiveness in these patients, such as modification in some of the ongoing immunosuppressive therapies and the preferential use of mRNA other than vector-based vaccines. Immunomodulating agents can be a therapeutic opportunity for the management of COVID-19 patients; however, their clinical impact depends on how they are handled. To place in therapy immunomodulating agents in the correct window of opportunity throughout the identification of surrogate markers of disease progression and host immune response is mandatory to optimize patient's outcome.


Subject(s)
Autoimmunity/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Rheumatic Diseases/immunology , Spike Glycoprotein, Coronavirus/immunology , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Rheumatic Diseases/drug therapy , SARS-CoV-2/immunology , Vaccination
9.
Front Immunol ; 12: 733418, 2021.
Article in English | MEDLINE | ID: covidwho-1450812

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and abnormal fatigability due to the antibodies against postsynaptic receptors. Despite the individual discrepancy, patients with MG share common muscle weakness, autoimmune dysfunction, and immunosuppressive treatment, which predispose them to infections that can trigger or exacerbate MG. Vaccination, as a mainstay of prophylaxis, is a major management strategy. However, the past years have seen growth in vaccine hesitancy, owing to safety and efficacy concerns. Ironically, vaccines, serving as an essential and effective means of defense, may induce similar immune cross-reactivity to what they are meant to prevent. Herein, we outline the progress in vaccination, review the current status, and postulate the clinical association among MG, vaccination, and immunosuppression. We also address safety and efficacy concerns of vaccination in MG, in relation to COVID-19. Since only a handful of studies have reported vaccination in individuals with MG, we further review the current clinical studies and guidelines in rheumatic diseases. Overall, our reviews offer a reference to guide future vaccine clinical decision-making and improve the management of MG patients.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , SARS-CoV-2/immunology , Autoimmunity/immunology , Humans , Immune Tolerance/immunology , Influenza Vaccines/immunology , Risk , Vaccination/adverse effects
10.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438528

ABSTRACT

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Subject(s)
Autoimmunity , COVID-19/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunity, Humoral , Inflammation , Neutrophils/immunology , Antibodies, Antinuclear , Antimicrobial Cationic Peptides/blood , Autoantibodies/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/pharmacology , Flow Cytometry , Granulocytes/metabolism , HMGB1 Protein/blood , Healthy Volunteers , Humans , Microscopy, Confocal , Monocytes/cytology , Neutrophils/cytology , SARS-CoV-2 , Ubiquitins/pharmacology
11.
Scand J Immunol ; 94(5): e13102, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1434833

ABSTRACT

During COVID-19 infection, reduced function of natural killer (NK) cells can lead to both compromised viral clearance and dysregulation of the immune response. Such dysregulation leads to overproduction of cytokines, a raised neutrophil/lymphocyte ratio and monocytosis. This in turn increases IL-6 expression, which promotes scar and thrombus formation. Excess IL-6 also leads to a further reduction in NK function through downregulation of perforin expression, therefore forming a pathogenic auto-inflammatory feedback loop. The perforin/granzyme system of cytotoxicity is the main mechanism through which NK cells and cytotoxic T lymphocytes eliminate virally infected host cells, as well as being central to their role in regulating immune responses to microbial infection. Here, we present epidemiological evidence suggesting an association between perforin expression and resistance to COVID-19. In addition, we outline the manner in which a pathogenic auto-inflammatory feedback loop could operate and the relationship of this loop to genes associated with severe COVID-19. Such an auto-inflammatory loop may be amenable to synergistic multimodal therapy.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Killer Cells, Natural/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Neutrophils/immunology , Perforin/metabolism , SARS-CoV-2/physiology , Animals , Autoimmunity/genetics , COVID-19/epidemiology , Cytokine Release Syndrome/epidemiology , Disease Resistance , Humans , Interleukin-6/metabolism , Lymphohistiocytosis, Hemophagocytic/epidemiology , Perforin/genetics
12.
J Proteome Res ; 20(10): 4627-4639, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1434058

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the pandemic coronavirus disease 2019 (COVID-19), which has had a devastating impact on society. Here, we summarize proteomic research that has helped elucidate hallmark proteins associated with the disease with respect to both short- and long-term diagnosis and prognosis. Additionally, we review the highly variable humoral response associated with COVID-19 and the increased risk of autoimmunity.


Subject(s)
COVID-19 , Autoimmunity , Humans , Pandemics , Proteomics , SARS-CoV-2
13.
Autoimmun Rev ; 20(11): 102945, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401228

ABSTRACT

Notwithstanding the fact that the 12th international congress of autoimmunity (AUTO12) was held virtual this year, the number of the abstracts submitted and those presented crossed the thousand marks. Leading investigators and researchers from all over the world presented the latest developments of their research in the domain of autoimmunity and its correlation with various diseases. In terms of mechanisms of autoimmunity, an update on the mechanisms behind the association of autoimmunity with systemic diseases focusing on hyperstimulation was presented during AUTO12. In addition, a new mechanism of ASIA syndrome caused by an intrauterine contraceptive device was revealed demonstrating a complete resolution of symptoms following device removal. In regard to the correlation between autoimmunity and neurogenerative diseases, the loss of structural protein integrity as the trigger of immunological response was shown. Schizophrenia as well, and its correlation to pro-inflammatory cytokines was also addressed. Furthermore, and as it was said AUTO12 virtual due to COVID-19 pandemic, various works were dedicated to SARS-CoV-2 infection and COVID-19 in terms of autoimmune mechanisms involved in the pathogenesis, treatment and complications of COVID-19. For instance, the correlation between autoimmunity and the severity of COVID-19 was viewed. Moreover, the presence and association of autoantibodies in COVID-19 was also demonstrated, as well as the clinical outcomes of COVID-19 in patients with rheumatic diseases. Finally, immune-mediated reactions and processes secondary to SARS-CoV-2 vaccination was displayed. Due to the immense importance of all of the topics addressed and while several hundreds of works were presented which cannot be summed up in one paper, we aimed hereby to highlight some of the outstanding abstracts and presentations during AUTO12.


Subject(s)
Autoimmune Diseases , COVID-19 , Autoimmune Diseases/epidemiology , Autoimmunity , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2 , Taste
14.
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401227

ABSTRACT

Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.


Subject(s)
COVID-19 , SARS Virus , Viral Vaccines , Autoimmunity , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination/adverse effects
16.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1389386

ABSTRACT

Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient's immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.


Subject(s)
Autoimmune Diseases/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Aortic Aneurysm, Abdominal/pathology , Autoimmune Diseases/pathology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/pathology , Humans , Neutrophil Activation/immunology , Plaque, Atherosclerotic/pathology , Thrombosis/pathology
18.
Front Immunol ; 11: 631743, 2020.
Article in English | MEDLINE | ID: covidwho-1389175

ABSTRACT

The concept of trained immunity has recently emerged as a mechanism contributing to several immune mediated inflammatory conditions. Trained immunity is defined by the immunological memory developed in innate immune cells after a primary non-specific stimulus that, in turn, promotes a heightened inflammatory response upon a secondary challenge. The most characteristic changes associated to this process involve the rewiring of cell metabolism and epigenetic reprogramming. Under physiological conditions, the role of trained immune cells ensures a prompt response. This action is limited by effective resolution of inflammation and tissue repair in order to restore homeostasis. However, unrestrained activation of innate immune cells contributes to the development of chronic inflammation and tissue destruction through the secretion of inflammatory cytokines, proteases and growth factors. Therefore, interventions aimed at reversing the changes induced by trained immunity provide potential therapeutic approaches to treat inflammatory and autoimmune diseases like rheumatoid arthritis (RA). We review cellular approaches that target metabolism and the epigenetic reprogramming of dendritic cells, macrophages, natural killer cells, and other trained cells in the context of autoimmune inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , Biological Products/therapeutic use , Immune System/drug effects , Inflammation/drug therapy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , COVID-19/drug therapy , COVID-19/immunology , Energy Metabolism/drug effects , Epigenesis, Genetic/drug effects , Humans , Immune System/immunology , Immune System/metabolism , Immunity, Innate/drug effects , Immunologic Memory/drug effects , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Signal Transduction
19.
Front Immunol ; 12: 705772, 2021.
Article in English | MEDLINE | ID: covidwho-1376700

ABSTRACT

Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.


Subject(s)
Autoimmunity , COVID-19 Vaccines/immunology , COVID-19/immunology , Proteome/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , COVID-19/complications , COVID-19 Vaccines/adverse effects , Computer Simulation , Epitopes, B-Lymphocyte/immunology , HLA Antigens/immunology , Humans , Peptide Fragments/immunology , Peptide Library
20.
Rheumatol Int ; 41(11): 1885-1894, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375632

ABSTRACT

The SARS-CoV-2 virus is known to mediate attack via ACE-2 Receptor, thus having adverse effects on cardiovascular, respiratory, digestive and reproductive systems, the latter being an area of emerging concern, due to the associated impact on fertility, with potential for an outsized effect on population distribution and socioeconomic road map in subsequent years. This narrative review aims to put forth the current evidence of effect of SARS-CoV-2 on human fertility from a multipronged immunologic, haematologic, and gynaecologic perspective; highlighting the areas of contradiction and potential future measures. A literature search was conducted through the MEDLINE and SCOPUS databases to identify articles on the subject in English. Relevant information was extracted from around 300 articles for this review. The existing data give non-conclusive evidence about the impact of SARS-CoV-2 infection on fertility; however, a greater impact on male fertility as compared to females merits further exploration. However, reproduction and fertility is a key concern and considering the pandemic is prolonged, natural conception or ART require extra precautions.


Subject(s)
Autoimmunity , COVID-19/complications , Fertility , Genitalia/virology , Angiotensin-Converting Enzyme 2 , COVID-19/epidemiology , Female , Humans , Male , Pandemics , Pregnancy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...