Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Allergy Clin Immunol ; 149(2): 455-465, 2022 02.
Article in English | MEDLINE | ID: covidwho-1676782

ABSTRACT

Severe asthma is a heterogeneous disease encompassing different phenotypes and endotypes. Although patients with severe asthma constitute a small proportion of the total population with asthma, they largely account for the morbidity and mortality associated with asthma, indicating a clear unmet need. Being distinct from mild and moderate disease, new insights into the immunopathogenesis of severe asthma are needed. The disease endotypes have provided better insights into the immunopathogenic mechanisms underlying severe asthma. Current stratified approach of treating severe asthma based on phenotypes is met with shortcomings, necessitating unbiased multidimensional endotyping to cope with disease complexity. Therefore, in this review, we explore the distinct endotypes and their mechanistic pathways that characterize the heterogeneity observed in severe asthma.


Subject(s)
Asthma/immunology , Airway Remodeling , Asthma/etiology , Asthma/therapy , Autophagy/physiology , Bronchial Thermoplasty , Humans , Mitochondria/physiology , Obesity/complications , Th17 Cells/immunology , Th2 Cells/immunology
2.
Ann N Y Acad Sci ; 1507(1): 70-83, 2022 01.
Article in English | MEDLINE | ID: covidwho-1673249

ABSTRACT

For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.


Subject(s)
Aging/genetics , Aging/metabolism , Congresses as Topic/trends , Longevity/physiology , Research Report , Autophagy/physiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/mortality , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Humans , Metabolomics/methods , Metabolomics/trends , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/therapy , Stem Cell Transplantation/methods , Stem Cell Transplantation/trends
3.
Cell Rep ; 37(8): 110049, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1509642

ABSTRACT

Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.


Subject(s)
Autophagy/physiology , Hepacivirus/physiology , SARS-CoV-2/physiology , Viral Replication Compartments/metabolism , Autophagosomes/metabolism , Carrier Proteins/metabolism , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Phosphatidylinositol Phosphates/metabolism , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
Microbiol Spectr ; 9(2): e0090821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1452921

ABSTRACT

Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.


Subject(s)
Autophagy/physiology , Blood Proteins/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus/growth & development , Poly(A)-Binding Proteins/metabolism , Virus Replication/physiology , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Infectious bronchitis virus/growth & development , Murine hepatitis virus/growth & development , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/growth & development , Proteolysis , Sp1 Transcription Factor/metabolism , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells
5.
J Virol ; 95(19): e0085121, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1403028

ABSTRACT

Uncoordinated 51-like kinase 1 (ULK1) is a well-characterized initiator of canonical autophagy under basal or pathological conditions. Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus (ß-CoV), impairs ULK1 kinase but hijacks autophagy to facilitate viral proliferation. However, the machinery of PHEV-induced autophagy initiation upon ULK1 kinase deficiency remains unclear. Here, the time course of PHEV infection showed a significant accumulation of autophagosomes (APs) in nerve cells in vivo and in vitro. Utilizing ULK1-knockout neuroblastoma cells, we have identified that ULK1 is not essential for productive AP formation induced by PHEV. In vitro phosphorylation studies discovered that mTORC1-regulated ULK1 activation stalls during PHEV infection, whereas AP biogenesis was controlled by AMPK-driven BECN1 phosphorylation. A lack of BECN1 is sufficient to block LC3 lipidation and disrupt recruitment of the LC3-ATG14 complex. Moreover, BECN1 acts as a bona fide substrate for ULK1-independent neural autophagy, and ectopic expression of BECN1 somewhat enhances PHEV replication. These findings highlight a novel machinery of noncanonical autophagy independent of ULK1 that bypasses the conserved initiation circuit of AMPK-mTORC1-ULK1, providing new insights into the interplay between neurotropic ß-CoV and the host. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic alongside the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) pose Betacoronavirus (ß-CoV) as a global public health challenge. Coronaviruses subvert, hijack, or utilize autophagy to promote proliferation, and thus, exploring the cross talk between ß-CoV and autophagy is of great significance in confronting future ß-CoV outbreaks. Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic ß-CoV that invades the central nervous system (CNS) in pigs, but understanding of the pathogenesis for PHEV-induced neurological dysfunction is yet limited. Here, we discovered a novel regulatory principle of neural autophagy initiation during PHEV infection, where productive autophagosome (AP) biogenesis bypasses the multifaceted regulation of ULK1 kinase. The PHEV-triggered noncanonical autophagy underscores the complex interactions of virus and host and will help in the development of therapeutic strategies targeting noncanonical autophagy to treat ß-CoV disease.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , Betacoronavirus 1/metabolism , Animals , Autophagosomes/metabolism , Beclin-1/metabolism , COVID-19 , Cell Line , Gene Knockout Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred BALB C , Neurons/metabolism , Phosphorylation , SARS-CoV-2
6.
Autophagy ; 17(8): 2048-2050, 2021 08.
Article in English | MEDLINE | ID: covidwho-1393103

ABSTRACT

TMEM41B and VMP1, two endoplasmic reticulum (ER)-resident transmembrane proteins, play important roles in regulating the formation of lipid droplets (LDs), autophagy initiation, and viral infection. However, the biochemical functions of TMEM41B and VMP1 are unclear. A lipids distribution screen suggested TMEM41B and VMP1 are critical to the normal distribution of cholesterol and phosphatidylserine. Biochemical analyses unveiled that TMEM41B and VMP1 have scramblase activity. These findings shed light on the mechanism by which TMEM41B and VMP1 regulate LD formation, lipids distribution, macroautophagy, and viral infection.


Subject(s)
Autophagy/physiology , Membrane Proteins/metabolism , Phospholipid Transfer Proteins/metabolism , Animals , Autophagosomes/metabolism , Humans , Macroautophagy/physiology
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166260, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1377661

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. METHODS: SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. RESULTS: Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.


Subject(s)
COVID-19/metabolism , Inflammation/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Apoptosis/immunology , Autophagy/physiology , Cell Line , Chlorocebus aethiops , Endothelial Cells/metabolism , HEK293 Cells , Humans , Inflammation/immunology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/metabolism , TOR Serine-Threonine Kinases/metabolism , Vero Cells
8.
Autophagy ; 18(3): 473-495, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1303855

ABSTRACT

Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible.Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Animals , Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , SARS-CoV-2
9.
Sci Rep ; 11(1): 6725, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149749

ABSTRACT

The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


Subject(s)
COVID-19/drug therapy , COVID-19/metabolism , Data Mining/methods , Transcription Factor AP-1/metabolism , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , Autophagy/physiology , COVID-19/epidemiology , COVID-19/genetics , Chlorocebus aethiops , Databases, Genetic , Drug Approval , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Targeted Therapy , Pandemics , SARS-CoV-2/isolation & purification , Vero Cells
10.
Sci Signal ; 14(665)2021 01 12.
Article in English | MEDLINE | ID: covidwho-1066811

ABSTRACT

The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin ß3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 µ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin ß3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/virology , Integrin beta3/physiology , Receptors, Virus/physiology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Internalization , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Autophagy/physiology , Endocytosis/physiology , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Integrin beta3/chemistry , Integrin beta3/genetics , Models, Molecular , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2/genetics
12.
Autophagy ; 16(12): 2276-2281, 2020 12.
Article in English | MEDLINE | ID: covidwho-949532

ABSTRACT

In less than eleven months, the world was brought to a halt by the COVID-19 outbreak. With hospitals becoming overwhelmed, one of the highest priorities concerned critical care triage to ration the scarce resources of intensive care units. Which patient should be treated first? Based on what clinical and biological criteria? A global joint effort rapidly led to sequencing the genomes of tens of thousands of COVID-19 patients to determine the patients' genetic signature that causes them to be at risk of suddenly developing severe disease. In this commentary, we would like to consider some points concerning the use of a multifactorial risk score for COVID-19 severity. This score includes macroautophagy (hereafter referred to as autophagy), a critical host process that controls all steps harnessed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Abbreviation list: ATG5: autophagy related 5; BECN1: beclin 1; COVID-19: coronavirus infectious disease-2019; EGR1: early growth response 1; ER: endoplasmic reticulum; DMVs: double-membrane vesicles; IBV: infectious bronchitis virus; MAP1LC3: microtubule associated protein 1 light chain 3; LC3-I: proteolytically processed, non-lipidated MAP1LC3; LC3-II: lipidated MAP1LC3; MEFs: mouse embryonic fibroblasts; MERS-CoV: Middle East respiratory syndrome-coronavirus; MHV: mouse hepatitis virus; NSP: non-structural protein; PEDV: porcine epidemic diarrhea virus; PLP2-TM: membrane-associated papain-like protease 2; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TGEV: transmissible gastroenteritis virus.


Subject(s)
Autophagy-Related Proteins/genetics , Autophagy/genetics , COVID-19/diagnosis , COVID-19/therapy , Transcriptome , Animals , Autophagy/physiology , Autophagy-Related Proteins/analysis , Biomarkers/analysis , Biomarkers/metabolism , COVID-19/genetics , COVID-19/pathology , Genetic Predisposition to Disease , Humans , Infectious bronchitis virus/physiology , Mice , Middle East Respiratory Syndrome Coronavirus/physiology , Molecular Diagnostic Techniques/methods , Prognosis , Research Design , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index , Transcriptome/physiology
13.
Autophagy ; 16(12): 2123-2127, 2020 12.
Article in English | MEDLINE | ID: covidwho-913052

ABSTRACT

In the preceding months, the novel SARS-CoV-2 pandemic has devastated global communities. The need for safe and effective prophylactic and therapeutic treatments to combat COVID-19 - the human disease resulting from SARS-CoV-2 infection - is clear. Here, we present recent developments in the effort to combat COVID-19 and consider whether SARS-CoV-2 may potentially interact with the host autophagy pathway. Abbreviations: ACE2, angiotensin converting enzyme II; ßCoV, betacoronavirus; COVID-19, Coronavirus Disease 2019; CQ, chloroquine; DMV, double-membrane vesicle; GI, gastrointestinal; HCQ, hydroxychloroquine; IL, interleukin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEFs, mouse embryonic fibroblasts; MERS-CoV, Middle East respiratory syndrome coronavirus; MHV, murine hepatitis virus; PE, phosphatidylethanolamine; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TMPRSS2, transmembrane serine protease 2; TNF, tumor necrosis factor; WHO, World Health Organization.


Subject(s)
Autophagy/physiology , COVID-19/immunology , SARS-CoV-2/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use , Antimetabolites/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/therapy , Dexamethasone/therapeutic use , Disease Outbreaks , Drug Development/trends , Humans , Mice , Pandemics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/physiology , Virus Internalization
14.
Autophagy ; 16(12): 2131-2139, 2020 12.
Article in English | MEDLINE | ID: covidwho-786942

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is the most recent example of an emergent coronavirus that poses a significant threat to human health. Virus-host interactions play a major role in the viral life cycle and disease pathogenesis, and cellular pathways such as macroautophagy/autophagy prove to be either detrimental or beneficial to viral replication and maturation. Here, we describe the literature over the past twenty years describing autophagy-coronavirus interactions. There is evidence that many coronaviruses induce autophagy, although some of these viruses halt the progression of the pathway prior to autophagic degradation. In contrast, other coronaviruses usurp components of the autophagy pathway in a non-canonical fashion. Cataloging these virus-host interactions is crucial for understanding disease pathogenesis, especially with the global challenge of SARS-CoV-2 and COVID-19. With the recognition of autophagy inhibitors, including the controversial drug chloroquine, as possible treatments for COVID-19, understanding how autophagy affects the virus will be critical going forward. Abbreviations: 3-MA: 3-methyladenine (autophagy inhibitor); AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; ATPase: adenosine triphosphatase; BMM: bone marrow macrophage; CGAS: cyclic GMP-AMP synthase; CHO: Chinese hamster ovary/cell line; CoV: coronaviruses; COVID-19: Coronavirus disease 2019; DMV: double-membrane vesicle; EAV: equine arteritis virus; EDEM1: ER degradation enhancing alpha-mannosidase like protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; GFP: green fluorescent protein; HCoV: human coronavirus; HIV: human immunodeficiency virus; HSV: herpes simplex virus; IBV: infectious bronchitis virus; IFN: interferon; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCoV: mouse coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; MHV: mouse hepatitis virus; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2 (autophagy receptor that directs cargo to phagophores); nsp: non-structural protein; OS9: OS9 endoplasmic reticulum lectin; PEDV: porcine epidemic diarrhea virus; PtdIns3K: class III phosphatidylinositol 3-kinase; PLP: papain-like protease; pMEF: primary mouse embryonic fibroblasts; SARS-CoV: severe acute respiratory syndrome coronavirus; SKP2: S-phase kinase associated protein 2; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; ULK1: unc-51 like autophagy activating kinase 1; Vps: vacuolar protein sorting.


Subject(s)
Autophagy/physiology , Coronavirus Infections/immunology , Coronavirus/immunology , Animals , Autophagy-Related Protein 5/physiology , CHO Cells , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Coronavirus/pathogenicity , Coronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cricetinae , Cricetulus , Humans , Mice , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/physiology
15.
Med Hypotheses ; 143: 110083, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-639339

ABSTRACT

The outbreak of CoronaVirus Disease19 (COVID19) in December 2019 posed a serious threat to public safety, and its rapid spread caused a global health emergency. Clinical data show that in addition to respiratory system damage, some male patients with COVID-19 are also accompanied by abnormal renal function and even renal damage. As the main receptor of syndrome coronavirus 2 (SARS-CoV-2), angiotensin converting enzyme 2 (ACE2) is also found to be highly expressed not only in respiratory mucosa and alveolar epithelial cells, but also in renal tubule cells, testicular Leydig cells and seminiferous tubule cells. This suggests that SARS-CoV-2 has the possibility of infecting the male reproductive system, and the recent detection of SARS-CoV-2 in the patient's semen further confirms this theory. In previous studies, it has been found that ACE2 has the ability to regulate autophagy. Not only that, recent studies have also found that SARS-CoV-2 infection can also lead to a reduction in autophagy. All of these associate SARS-CoV-2 with autophagy. Furthermore, autophagy has been shown to have an effect on male reproduction in many studies. Based on these, we propose the hypothesis that SARS-CoV-2 affects male reproductive function by regulating autophagy. This hypothesis may provide a new idea for future treatment of COVID-19 male patients with reproductive function injury, and it can also prompt medical staff and patients to consciously check their reproductive function.


Subject(s)
Autophagy/physiology , Betacoronavirus , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Reproduction/physiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Genitalia, Male/pathology , Genitalia, Male/physiopathology , Genitalia, Male/virology , Humans , Infertility, Male/etiology , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Models, Biological , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , SARS-CoV-2 , Spermatozoa/pathology , Spermatozoa/virology
16.
Autophagy ; 16(12): 2271-2272, 2020 12.
Article in English | MEDLINE | ID: covidwho-613427

ABSTRACT

Given the devastating consequences of the current COVID-19 pandemic and its impact on all of us, the question arises as to whether manipulating the cellular degradation (recycling, waste disposal) mechanism known as macroautophagy/autophagy (in particular, the selective degradation of virus particles, termed virophagy) might be a beneficial approach to fight the novel coronavirus, SARS-CoV-2. Knowing that "autophagy can reprocess everything", it seems almost inevitable that, sooner rather than later, a further hypothesis-driven work will detail the role of virophagy as a fundamental "disposal strategy" against COVID-19, yielding most needed therapeutic interventions. Abbreviations: ATG, autophagy-related; CoV/CoVs coronavirus/coronaviruses; COVID-19, coronavirus disease 2019; MERS-CoV, Middle East respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.


Subject(s)
Autophagy/physiology , COVID-19/therapy , Immunity, Cellular/physiology , Phagocytosis/physiology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Disease Outbreaks , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , SARS-CoV-2/pathogenicity , Virion/metabolism
17.
Autophagy ; 16(12): 2260-2266, 2020 12.
Article in English | MEDLINE | ID: covidwho-593676

ABSTRACT

During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.Abbreviation: ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.


Subject(s)
Autophagy/physiology , COVID-19/immunology , Chloroquine/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Autophagy/drug effects , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chloroquine/therapeutic use , Endosomes/drug effects , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration/drug effects , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Immunity, Innate/physiology , Lysosomes/drug effects , Lysosomes/metabolism , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , SARS-CoV-2/pathogenicity , Severity of Illness Index
18.
Autophagy ; 16(12): 2267-2270, 2020 12.
Article in English | MEDLINE | ID: covidwho-592167

ABSTRACT

At a time when the world faces an emotional breakdown, crushing our dreams, if not, taking our lives, we realize that together we must fight the war against the COVID-19 outbreak even if almost the majority of the scientific community finds itself confined at home. Every day, we, scientists, listen to the latest news with its promises and announcements. Across the world, a surge of clinical trials trying to cure or slow down the coronavirus pandemic has been launched to bring hope instead of fear and despair. One first proposed clinical trial has drawn worldwide hype to the benefit of chloroquine (CQ), in the treatment of patients infected by the recently emerged deadly coronavirus (SARS-CoV-2). We should consider this information in light of the long-standing anti-inflammatory and anti-viral properties of CQ-related drugs. Yet, none of the articles promoting the use of CQ in the current pandemic evoked a possible molecular or cellular mechanism of action that could account for any efficacy. Here, given the interaction of viruses with macroautophagy (hereafter referred to as autophagy), a CQ-sensitive anti-viral safeguard pathway, we would like to discuss the pros, but also the cons concerning the current therapeutic options targeting this process.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autophagy/drug effects , COVID-19/drug therapy , Chloroquine/therapeutic use , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Autophagy/physiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Disease Eradication/methods , Drug Repositioning/methods , Drug Repositioning/trends , Drug-Related Side Effects and Adverse Reactions/epidemiology , Ebolavirus/drug effects , HIV/drug effects , History, 21st Century , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Malaria/drug therapy , Pandemics , Plasmodium malariae/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL