Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(3): e0247356, 2021.
Article in English | MEDLINE | ID: covidwho-1119472

ABSTRACT

BACKGROUND: Hydroxychloroquine (HCQ) and azithromycin (AZM) are antimalarial drugs recently reported to be active against severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2), which is causing the global COVID-19 pandemic. In an emergency response to the pandemic, we aimed to develop a quantitation method for HCQ, its metabolites desethylhydroxychloroquine (DHCQ) and bisdesethylchloroquine (BDCQ), and AZM in human plasma. METHODS: Liquid chromatography tandem mass spectrometry was used to develop the method. Samples (20 µL) are extracted by solid-phase extraction and injected onto the LC-MS/MS system equipped with a PFP column (2.0 × 50 mm, 3 µm). ESI+ and MRM are used for detection. Ion pairs m/z 336.1→247.1 for HCQ, 308.1→179.1 for DHCQ, 264.1→179.1 for BDCQ, and 749.6→591.6 for AZM are selected for quantification. The ion pairs m/z 342.1→253.1, 314.1→181.1, 270.1→181.1, and 754.6→596.6 are selected for the corresponding deuterated internal standards (IS) HCQ-d4, DHCQ-d4, BDCQ-d4, and AZM-d5. The less abundant IS ions from 37Cl were used to overcome the interference from the analytes. RESULTS: Under optimized conditions, retention times are 0.78 min for BDCQ, 0.79 min for DHCQ, 0.92 min for HCQ and 1.87 min for AZM. Total run time is 3.5 min per sample. The calibration ranges are 2-1000 ng/mL for HCQ and AZM, 1-500 ng/mL for DHCQ and 0.5-250 ng/mL for BDCQ; samples above the range are validated for up to 10-fold dilution. Recoveries of the method ranged from 88.9-94.4% for HCQ, 88.6-92.9% for DHCQ, 88.7-90.9% for BDCQ, and 98.6%-102% for AZM. The IS normalized matrix effect were within (100±10) % for all 4 analytes. Blood samples are stable for at least 6 hr at room temperature. Plasma samples are stable for at least 66 hr at room temperature, 38 days at -70°C, and 4 freeze-thaw cycles. CONCLUSIONS: An LC-MS/MS method for simultaneous quantitation of HCQ, DHCQ, BDCQ, and AZM in human plasma was developed and validated for clinical studies requiring fast turnaround time and small samples volume.


Subject(s)
Anti-Bacterial Agents/blood , Antimalarials/blood , Azithromycin/blood , Chloroquine/analogs & derivatives , Hydroxychloroquine/analogs & derivatives , Hydroxychloroquine/blood , Blood Specimen Collection/methods , Chloroquine/blood , Chromatography, High Pressure Liquid/methods , Drug Monitoring/methods , Edetic Acid/blood , Humans , Limit of Detection , Tandem Mass Spectrometry/methods
2.
J Pharm Biomed Anal ; 196: 113935, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1051795

ABSTRACT

BACKGROUND: The present COVID-19 pandemic has prompted worldwide repurposing of drugs. The aim of the present work was to develop and validate a two-dimensional isotope-dilution liquid chromatrography tandem mass spectrometry (ID-LC-MS/MS) method for accurate quantification of remdesivir and its active metabolite GS-441524, chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin in serum; drugs that have gained attention for repurposing in the treatment of COVID-19. METHODS: Following protein precipitation, samples were separated with a two-dimensional ultra-high performance liquid chromatography (2D-UHPLC) setup, consisting of an online solid phase extraction (SPE) coupled to an analytical column. For quantification, stable isotope-labelled analogues were used as internal standards for all analytes. The method was validated on the basis of the European Medicines Agency bioanalytical method validation protocol. RESULTS: Detuning of lopinavir and ritonavir allowed simultaneous quantification of all analytes with different concentration ranges and sensitivity with a uniform injection volume of 5 µL. The method provided robust validation results with inaccuracy and imprecision values of ≤ 9.59 % and ≤ 11.1 % for all quality controls. CONCLUSION: The presented method is suitable for accurate and simultaneous quantification of remdesivir, its metabolite GS-441525, chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin in human serum. The quantitative assay may be an efficient tool for the therapeutic drug monitoring of these potential drug candidates in COVID-19 patients in order to increase treatment efficacy and safety.


Subject(s)
Antiviral Agents/blood , Antiviral Agents/therapeutic use , COVID-19/blood , COVID-19/drug therapy , Isotopes/chemistry , SARS-CoV-2/drug effects , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/blood , Alanine/analogs & derivatives , Alanine/blood , Amides/blood , Azithromycin/blood , Chloroquine/blood , Chromatography, Liquid/methods , Furans/blood , Humans , Hydroxychloroquine/blood , Lopinavir/blood , Pandemics/prevention & control , Pyrazines/blood , Pyrroles/blood , Ritonavir/blood , Tandem Mass Spectrometry/methods , Triazines/blood
SELECTION OF CITATIONS
SEARCH DETAIL