Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.018
Filter
1.
Med.lab ; 26(4): 375-381, 2022. ilus
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-20234396

ABSTRACT

Uno de los efectos secundarios encontrados en pacientes con antecedente de vacunación por COVID-19, especialmente con la vacuna Pfizer-BioNTech, es la aparición de múltiples adenopatías hiperplásicas, principalmente en los ganglios linfáticos axilares, supraclaviculares e infraclaviculares ipsilaterales al sitio de vacunación. Presentamos el caso de una paciente femenina de 33 años, con aparición de masa dolorosa supraclavicular izquierda, quien una semana antes había sido vacunada con la primera dosis de la vacuna Pfizer-BioNTech en región deltoidea izquierda. Los hallazgos citológicos fueron sugestivos de una enfermedad linfoproliferativa, y el estudio histopatológico reveló linfadenopatía reactiva con proliferación de inmunoblastos B activados, secundaria a la vacunación contra COVID-19. Aportamos a la literatura con la caracterización de los hallazgos histopatológicos de la linfadenopatía posvacunación contra COVID-19. Es importante que los médicos tratantes y radiólogos estén familiarizados con este diagnóstico diferencial, para brindar recomendaciones adecuadas basadas en un seguimiento a corto plazo, en lugar de realizar biopsias, intervenciones y conductas inmediatas innecesarias en el manejo de los pacientes


One of the side effects found in patients with a history of vaccination for COVID-19, especially with the Pfizer-BioNTech vaccine, is the appearance of multiple hyperplastic adenopathies, mainly axillary, supraclavicular and infraclavicular lymph nodes ipsilateral to the vaccination site. We present the case of a 33-year-old female patient, with the appearance of a painful left supraclavicular mass, who was vaccinated a week earlier with the first dose of the Pfizer-BioNTech vaccine in the left deltoid region. The cytological findings were suggestive of a lymphoproliferative disease, and the histopathological study revealed reactive lymphadenopathy with proliferation of activated B immunoblasts, secondary to vaccination against COVID-19. We contribute to the literature with the characterization of the histopathological findings of COVID-19 post-vaccination lymphadenopathy. It is important for treating physicians and radiologists to be familiar with this differential diagnosis, in order to provide appropriate recommendations based on short-term follow-up, instead of performing unnecessary immediate biopsies or interventions in patient management.


Subject(s)
Humans , Female , Adult , Lymphadenopathy/chemically induced , BNT162 Vaccine/adverse effects , Lymphadenopathy/diagnosis , Lymphadenopathy/pathology
2.
Med.lab ; 26(4): 383-389, 2022. Tabs, ilus
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-20242196

ABSTRACT

La enfermedad por coronavirus SARS-CoV-2 que surgió en el año 2019 (COVID-19), ha obligado al rápido desarrollo de vacunas para prevenir su propagación e intentar controlar la pandemia. Dentro de las vacunas desarrolladas, las primeras en ser aprobadas con una tecnología nueva en el campo de la vacunación, fueron las vacunas basadas en ARNm (ácido ribonucleico mensajero), que lograron tasas de efectividad cercanas al 95 % para la prevención de la enfermedad COVID-19 grave. Los eventos adversos comunes son reacciones locales leves, pero ha habido varios informes de pacientes que desarrollaron tiroiditis subaguda y disfunción tiroidea después de recibir la vacuna contra SARS-CoV-2. Este artículo presenta dos casos de tiroiditis subaguda poco después de recibir la vacuna contra COVID-19


The SARS-CoV-2 coronavirus disease which emerged in 2019 (COVID-19), has forced the rapid development of vaccines to prevent the spread of infection and attempt to control the pandemic. Among the vaccines developed, one of the first to be approved with a new technology in the field of vaccination, was the mRNA (messenger ribonucleic acid) vaccine, with rates of effectiveness close to 95% for the prevention of severe COVID-19 disease. Common adverse events are mild local reactions, but there have been some reports of patients developing sub-acute thyroiditis and thyroid dysfunction after receiving the SARS-CoV-2 vaccine. This article presents two case reports of subacute thyroiditis shortly after receiving the COVID-19 vaccine


Subject(s)
Humans , Male , Female , Adult , Aged , Thyroiditis, Subacute/chemically induced , Thyrotoxicosis/chemically induced , BNT162 Vaccine/adverse effects , ChAdOx1 nCoV-19/adverse effects , Thyroiditis, Subacute/diagnosis , Thyroiditis, Subacute/drug therapy , Thyrotoxicosis/diagnosis , Thyrotoxicosis/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Goiter/chemically induced
3.
Nat Commun ; 14(1): 3440, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20244495

ABSTRACT

The overall success of worldwide mass vaccination in limiting the negative effect of the COVID-19 pandemics is inevitable, however, recent SARS-CoV-2 variants of concern, especially Omicron and its sub-lineages, efficiently evade humoral immunity mounted upon vaccination or previous infection. Thus, it is an important question whether these variants, or vaccines against them, induce anti-viral cellular immunity. Here we show that the mRNA vaccine BNT162b2 induces robust protective immunity in K18-hACE2 transgenic B-cell deficient (µMT) mice. We further demonstrate that the protection is attributed to cellular immunity depending on robust IFN-γ production. Viral challenge with SARS-CoV-2 Omicron BA.1 and BA.5.2 sub-variants induce boosted cellular responses in vaccinated µMT mice, which highlights the significance of cellular immunity against the ever-emerging SARS-CoV-2 variants evading antibody-mediated immunity. Our work, by providing evidence that BNT162b2 can induce significant protective immunity in mice that are unable to produce antibodies, thus highlights the importance of cellular immunity in the protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Animals , Humans , Mice , Antibodies , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Interferon-gamma , SARS-CoV-2 , COVID-19 Vaccines/immunology
4.
Front Cell Infect Microbiol ; 13: 1197349, 2023.
Article in English | MEDLINE | ID: covidwho-20243868

ABSTRACT

Introduction: We examined the neutralizing antibody production efficiency of the second and third severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine doses (2nd- and 3rd-dose) and neutralizing activity on mutant strains, including, the Ancestral, Beta and Omicron strains using green fluorescent protein-carrying recombinant SARS-CoV-2, in living-donor liver transplantation (LDLT) recipients. Methods: The patients who were administered vaccines other than Pfizer- BioNTechBNT162b2 and who had coronavirus disease 2019 in this study period were excluded. We enrolled 154 LDLT recipients and 50 healthy controls. Result: The median time were 21 days (between 1st and 2nd vaccination) and 244 days (between 2nd and 3rd vaccination). The median neutralizing antibody titer after 2nd-dose was lower in LDLT recipients than in controls (0.46 vs 1.00, P<0.0001). All controls had SARS-CoV-2 neutralizing antibodies, whereas 39 LDLT recipients (25.3%) had no neutralizing antibodies after 2nd-dose; age at vaccination, presence of ascites, multiple immunosuppressive treatments, and mycophenolate mofetil treatment were significant risk factors for nonresponder. The neutralizing activities of recipient sera were approximately 3-fold and 5-fold lower than those of control sera against the Ancestral and Beta strains, respectively. The median antibody titer after 3rd-dose was not significantly different between recipients and controls (1.02 vs 1.22, p=0.0758); only 5% recipients was non-responder. The neutralizing activity after third dose to Omicron strains were enhanced and had no significant difference between two groups. Conclusion: Only the 2nd-dose was not sufficiently effective in recipients; however, 3rd-dose had sufficient neutralizing activity against the mutant strain and was as effective as that in healthy controls.


Subject(s)
COVID-19 , Liver Transplantation , Humans , SARS-CoV-2/genetics , BNT162 Vaccine , COVID-19/prevention & control , Living Donors , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
5.
Mol Pharm ; 20(7): 3494-3504, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-20243366

ABSTRACT

PEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics. This study examined how anti-PEG IgM levels affect the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) and compared the immunogenicity of a lipid nanoparticle formulation of linear DNA (DNA-LNP) to standard PEG-HSPC liposomes. DNA-LNP was prepared using the same composition and approach as Pfizer's BNT162b2, except linear double-stranded DNA was used as the genetic material. PEGylated HSPC-based liposomes were formulated using the lipid rehydration and extrusion method. Nanoparticles were dosed IM to rats at 0.005-0.5 mg lipid/kg body weight 1 week before evaluating the plasma pharmacokinetics of clinically relevant doses of PLD (1 mg/kg, IV) or PEGylated interferon α2a (Pegasys, 5 µg/kg, SC). Plasma PEG IgM was compared between pre- and 1-week post-dose blood samples. The results showed that anti-PEG IgM production increased with increasing PEG-HSPC liposome dose and that IgM significantly correlated with the plasma half-life, clearance, volume of distribution, and area under the curve of a subsequent dose of PLD. The plasma exposure of Pegasys was also significantly reduced after initial delivery of 0.005 mg/ml PEG-HSPC liposome. However, a single 0.05 mg/kg IM dose of DNA-LNP did not significantly elevate PEG IgM and did not alter the IV pharmacokinetics of PLD. These data showed that PEGylated Covid-19 vaccines are less immunogenic compared to standard PEGylated HSPC liposomes and that there is an antibody threshold for accelerating the clearance of PEGylated therapeutics.


Subject(s)
COVID-19 , Nanoparticles , Rats , Humans , Animals , Liposomes , BNT162 Vaccine , COVID-19 Vaccines , Immunoglobulin M , Polyethylene Glycols/pharmacokinetics , DNA , Phosphatidylcholines
6.
PLoS Med ; 20(6): e1004245, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20243323

ABSTRACT

BACKGROUND: An increased risk of myocarditis or pericarditis after priming with mRNA Coronavirus Disease 2019 (COVID-19) vaccines has been shown but information on the risk post-booster is limited. With the now high prevalence of prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we assessed the effect of prior infection on the vaccine risk and the risk from COVID-19 reinfection. METHODS AND FINDINGS: We conducted a self-controlled case series analysis of hospital admissions for myocarditis or pericarditis in England between 22 February 2021 and 6 February 2022 in the 50 million individuals eligible to receive the adenovirus-vectored vaccine (ChAdOx1-S) for priming or an mRNA vaccine (BNT162b2 or mRNA-1273) for priming or boosting. Myocarditis and pericarditis admissions were extracted from the Secondary Uses Service (SUS) database in England and vaccination histories from the National Immunisation Management System (NIMS); prior infections were obtained from the UK Health Security Agency's Second-Generation Surveillance Systems. The relative incidence (RI) of admission within 0 to 6 and 7 to 14 days of vaccination compared with periods outside these risk windows stratified by age, dose, and prior SARS-CoV-2 infection for individuals aged 12 to 101 years was estimated. The RI within 27 days of an infection was assessed in the same model. There were 2,284 admissions for myocarditis and 1,651 for pericarditis in the study period. Elevated RIs were only observed in 16- to 39-year-olds 0 to 6 days postvaccination, mainly in males for myocarditis. Both mRNA vaccines showed elevated RIs after first, second, and third doses with the highest RIs after a second dose 5.34 (95% confidence interval (CI) [3.81, 7.48]; p < 0.001) for BNT162b2 and 56.48 (95% CI [33.95, 93.97]; p < 0.001) for mRNA-1273 compared with 4.38 (95% CI [2.59, 7.38]; p < 0.001) and 7.88 (95% CI [4.02, 15.44]; p < 0.001), respectively, after a third dose. For ChAdOx1-S, an elevated RI was only observed after a first dose, RI 5.23 (95% CI [2.48, 11.01]; p < 0.001). An elevated risk of admission for pericarditis was only observed 0 to 6 days after a second dose of mRNA-1273 vaccine in 16 to 39 year olds, RI 4.84 (95% CI [1.62, 14.01]; p = 0.004). RIs were lower in those with a prior SARS-CoV-2 infection than in those without, 2.47 (95% CI [1.32,4.63]; p = 0.005) versus 4.45 (95% [3.12, 6.34]; p = 0.001) after a second BNT162b2 dose, and 19.07 (95% CI [8.62, 42.19]; p < 0.001) versus 37.2 (95% CI [22.18, 62.38]; p < 0.001) for mRNA-1273 (myocarditis and pericarditis outcomes combined). RIs 1 to 27 days postinfection were elevated in all ages and were marginally lower for breakthrough infections, 2.33 (95% CI [1.96, 2.76]; p < 0.001) compared with 3.32 (95% CI [2.54, 4.33]; p < 0.001) in vaccine-naïve individuals respectively. CONCLUSIONS: We observed an increased risk of myocarditis within the first week after priming and booster doses of mRNA vaccines, predominantly in males under 40 years with the highest risks after a second dose. The risk difference between the second and the third doses was particularly marked for the mRNA-1273 vaccine that contains half the amount of mRNA when used for boosting than priming. The lower risk in those with prior SARS-CoV-2 infection, and lack of an enhanced effect post-booster, does not suggest a spike-directed immune mechanism. Research to understand the mechanism of vaccine-associated myocarditis and to document the risk with bivalent mRNA vaccines is warranted.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Humans , Male , Middle Aged , Young Adult , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , England/epidemiology , mRNA Vaccines , Myocarditis/epidemiology , Myocarditis/etiology , SARS-CoV-2 , Vaccination/adverse effects
7.
BMC Nephrol ; 24(1): 151, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-20241559

ABSTRACT

BACKGROUND: A significant decrease in antibody titres several months after COVID-19 primary vaccination in end-stage kidney disease (ESKD) patients receiving maintenance haemodialysis has recently been reported. The waning in antibody titres has led to the recommendations for a booster dose to increase the antibody titres after vaccination. Consequently, it is crucial to analyse the long-term humoral immune responses after COVID-19 primary vaccination and assess the immunogenicity and safety of booster doses in haemodialysis (HD) patients. METHODS: Patients on maintenance haemodialysis who received the primary vaccine of CoronaVac (Sinovac) vaccine were administered with BNT162b2 (Pfizer-BioNTech) as the booster dose. The immunogenicity was assessed before (V1), one month (V2) and eight months (V3) after the primary vaccination, as well as one month after the booster dose (V4). Patients were followed up one month after the booster dose to assess the adverse events (AEs). RESULTS: The geometric mean titre (GMT) of anti-SARS-CoV-2 S-RBD IgG antibody at 8 months after the primary vaccination increased significantly to 5,296.63 (95%CI: 2,930.89-9,571.94) U/mL (p = < 0.0001) compared to before the primary vaccination. The GMT also increased significantly to 19,142.56 (95% CI: 13,489.63-27,227.01) U/mL (p < 0.0001) 1 month after the booster vaccine. Meanwhile, the median inhibition rate of neutralizing antibodies (NAbs) at 8 months after the primary vaccine and 1 month after the booster dose were not significantly different (p > 0.9999). The most common AEs after the booster dose included mild pain at the injection site (55.26%), mild fatigue (10.53%), and swelling at the injection site (10.53%). No serious AEs were reported. CONCLUSIONS: The majority of ESKD patients on haemodialysis mounted a good antibody response to the BNT162b2 booster vaccination with tolerable adverse events.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Humans , BNT162 Vaccine , Prospective Studies , Indonesia , COVID-19/prevention & control , Kidney Failure, Chronic/therapy , Renal Dialysis , Immunoglobulin G , Antibodies, Viral
8.
Front Immunol ; 14: 1194225, 2023.
Article in English | MEDLINE | ID: covidwho-20241313

ABSTRACT

Introduction: Assessing the response to vaccinations is one of the diagnostic criteria for Common Variable Immune Deficiencies (CVIDs). Vaccination against SARS-CoV-2 offered the unique opportunity to analyze the immune response to a novel antigen. We identify four CVIDs phenotype clusters by the integration of immune parameters after BTN162b2 boosters. Methods: We performed a longitudinal study on 47 CVIDs patients who received the 3rd and 4th vaccine dose of the BNT162b2 vaccine measuring the generation of immunological memory. We analyzed specific and neutralizing antibodies, spike-specific memory B cells, and functional T cells. Results: We found that, depending on the readout of vaccine efficacy, the frequency of responders changes. Although 63.8% of the patients have specific antibodies in the serum, only 30% have high-affinity specific memory B cells and generate recall responses. Discussion: Thanks to the integration of our data, we identified four functional groups of CVIDs patients with different B cell phenotypes, T cell functions, and clinical diseases. The presence of antibodies alone is not sufficient to demonstrate the establishment of immune memory and the measurement of the in-vivo response to vaccination distinguishes patients with different immunological defects and clinical diseases.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , BNT162 Vaccine , Longitudinal Studies , SARS-CoV-2 , Antibodies, Neutralizing , Phenotype
9.
Rheumatol Int ; 43(9): 1621-1627, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-20241087

ABSTRACT

OBJECTIVES: To characterize the antibody response to COVID-19 mRNA vaccination in patients with Systemic Lupus Erythematosus (SLE) and identify predictors of poor response. METHODS: SLE patients who are followed at the Beth Israel Deaconess Medical Center Lupus Cohort (BID-LC) were enrolled. SARS-CoV-2 IgG Spike antibody was measured in patients who received two doses of either the BNT162b2 (Pfizer-BioNTech) or the mRNA-1273 (Moderna) COVID-19 vaccine (n = 62). We defined non-responders as patients with an IgG Spike antibody titer less than two-fold (< 2) the index value of the test and responders as patients with antibody levels greater or equal to two-fold (≥ 2). A web-based survey was used to collect information regarding immunosuppressive medication use and SLE flares after vaccination. RESULTS: In our cohort of lupus patients, 76% were vaccine responders. The use of two or more immunosuppressive drugs was associated with being a non-responder (Odds Ratio 5.26; 95% CI 1.23-22.34, p = 0.02). Both Belimumab use and higher Prednisone dose were associated with vaccine non-response (p = 0.04 and p = 0.04). The non-responder group had higher mean levels of serum IL-18 than the responder group (p = 0.04) as well as lower C3 levels (p = 0.01). Lupus flares and breakthrough infections were uncommon post-vaccination. CONCLUSIONS: Immunosuppressive medications have a negative impact on vaccine humoral response in SLE individuals. We observed a trend towards vaccine no-response in BNT162b2 recipients and a relationship between IL-18 and impaired antibody response that merits further investigation.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Humans , COVID-19 Vaccines , BNT162 Vaccine , Interleukin-18 , Antibody Formation , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Vaccination
10.
Viruses ; 15(5)2023 05 13.
Article in English | MEDLINE | ID: covidwho-20240840

ABSTRACT

The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Longitudinal Studies , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , ChAdOx1 nCoV-19 , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
11.
Curr Oncol ; 30(5): 5103-5115, 2023 05 17.
Article in English | MEDLINE | ID: covidwho-20240445

ABSTRACT

(1) Background: The clinical implications of COVID-19 outbreaks following SARS-CoV-2 vaccination in immunocompromised recipients are a worldwide concern. Cancer patients on active treatment remain at an increased risk of developing breakthrough infections because of waning immunity and the emergence of SARS-CoV-2 variants. There is a paucity of data on the effects of COVID-19 outbreaks on long-term survival outcomes in this population. (2) Methods: We enrolled 230 cancer patients who were on active treatment for advanced disease and had received booster dosing of an mRNA-BNT162b2 vaccine as part of the Vax-On-Third trial between September 2021 and October 2021. Four weeks after the third immunization, IgG antibodies against the spike receptor domain of SARS-CoV-2 were tested in all patients. We prospectively evaluated the incidence of breakthrough infections and disease outcomes. The coprimary endpoints were the effects of antibody titers on the development of breakthrough infections and the impact of COVID-19 outbreaks on cancer treatment failure. (3) Results: At a median follow-up of 16.3 months (95% CI 14.5-17.0), 85 (37%) patients developed SARS-CoV-2 infection. Hospitalization was required in 11 patients (12.9%) and only 2 (2.3%) deaths related to COVID-19 outbreaks were observed. Median antibody titers were significantly lower in breakthrough cases than in non-cases (291 BAU/mL (95% CI 210-505) vs. 2798 BAU/mL (95% CI 2323-3613), p < 0.001). A serological titer cut-off below 803 BAU/mL was predictive of breakthrough infection. In multivariate testing, antibody titers and cytotoxic chemotherapy were independently associated with an increased risk of outbreaks. Time-to-treatment failure after booster dosing was significantly shorter in patients who contracted SARS-CoV-2 infection (3.1 months (95% CI 2.3-3.6) vs. 16.2 months (95% CI 14.3-17.0), p < 0.001) and had an antibody level below the cut-off (3.6 months (95% CI 3.0-4.5) vs. 14.6 months (95% CI 11.9-16.3), p < 0.001). A multivariate Cox regression model confirmed that both covariates independently had a worsening effect on time-to-treatment failure. (4) Conclusions: These data support the role of vaccine boosters in preventing the incidence and severity of COVID-19 outbreaks. Enhanced humoral immunity after the third vaccination significantly correlates with protection against breakthrough infections. Strategies aimed at restraining SARS-CoV-2 transmission in advanced cancer patients undergoing active treatment should be prioritized to mitigate the impact on disease outcomes.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19 Vaccines/therapeutic use , Antibody Formation , SARS-CoV-2 , BNT162 Vaccine , Breakthrough Infections , Neoplasms/drug therapy
12.
Sci Rep ; 13(1): 8416, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20238068

ABSTRACT

The prevalence of seasonal human coronavirus (HCoV) infections in early childhood and adults has not been well analyzed in longitudinal serological studies. Here we analyzed the changes in HCoV (229E, HKU1, NL63, OC43, MERS, and SARS-CoV-2) spike-specific antibody levels in follow-up serum specimens of 140 children at the age of 1, 2, and 3 years, and of 113 healthcare workers vaccinated for Covid-19 with BNT162b2-vaccine. IgG antibody levels against six recombinant HCoV spike subunit 1 (S1) proteins were measured by enzyme immunoassay. We show that by the age of three years the cumulative seropositivity for seasonal HCoVs increased to 38-81% depending on virus type. BNT162b2 vaccinations increased anti-SARS-CoV-2 S1 antibodies, but no increase in seasonal coronavirus antibodies associated with vaccinations. In healthcare workers (HCWs), during a 1-year follow-up, diagnostic antibody rises were seen in 5, 4 and 14% of the cases against 229E, NL63 and OC43 viruses, respectively, correlating well with the circulating HCoVs. In 6% of the HCWs, a diagnostic antibody rise was seen against S1 of HKU1, however, these rises coincided with anti-OC43 S1 antibody rises. Rabbit and guinea pig immune sera against HCoV S1 proteins indicated immunological cross-reactivity within alpha-CoV (229E and NL63) and beta-CoV (HKU1 and OC43) genera.


Subject(s)
Blood Group Antigens , COVID-19 , Coronavirus 229E, Human , Adult , Child , Humans , Child, Preschool , Infant , Animals , Guinea Pigs , Rabbits , Reinfection , BNT162 Vaccine , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Health Personnel
13.
J Int Adv Otol ; 19(3): 228-233, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20237946

ABSTRACT

BACKGROUND: Side effects occurring after COVID-19 vaccination can include vertigo and dizziness. Despite its high incidence, few studies to date have assessed dizziness/vertigo after vaccination. The present study investigated the incidence of dizziness/vertigo after COVID-19 vaccination in South Korea. METHODS: Adverse reactions to COVID-19 vaccination reported to the Korea Disease Control and Prevention Agency from February 26, 2021, to July 31, 2022 (week 74) were analyzed. The incidence rates of dizziness/vertigo in subjects vaccinated with 5 COVID-19 vaccines, AZD1222 (AstraZeneca), BNT162b2 (Pfizer-BioNTech), JNJ-78436735 (Janssen), mRNA-1273 (Moderna), and NVX-CoV2373 (Novavax), were determined. RESULTS: A total of 126 725 952 doses of COVID-19 vaccine were administered, with 473 755 suspected adverse reactions (374 per 100 000 vaccinations) reported. Vertigo/dizziness was reported after the administration of 68 759 doses, or 54.3 per 100 000 vaccinations, making it the third most common adverse reaction after headache and muscle pain. CONCLUSION: Dizziness/vertigo was generally a mild adverse reaction after COVID-19 vaccination, but it was the third most common adverse reaction in Korea. Studies are necessary to clarify the causal relationship between vaccination and dizziness/vertigo and to prepare subjects for this possible adverse reaction.


Subject(s)
COVID-19 , Coronavirus , Humans , Dizziness/chemically induced , Dizziness/epidemiology , COVID-19 Vaccines/adverse effects , Ad26COVS1 , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/epidemiology , COVID-19/prevention & control , Vertigo/chemically induced , Vertigo/epidemiology , Vaccination/adverse effects
14.
Sci Rep ; 13(1): 8926, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20237910

ABSTRACT

After the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a novel mRNA vaccine (BNT162b2) was developed at an unprecedented speed. Although most countries have achieved widespread immunity from vaccines and infections, yet people, even who have recovered from SARS-CoV-2 infection, are recommended to receive vaccination due to their effectiveness in lowering the risk of recurrent infection. However, the BNT162b2 vaccine has been reported to increase the risk of myocarditis. To our knowledge, for the first time in this study, we tracked changes in the chromatin dynamics of peripheral blood mononuclear cells (PBMCs) in the patient who underwent myocarditis after BNT162b2 vaccination. A longitudinal study of chromatin accessibility using concurrent analysis of single-cell assays for transposase-accessible chromatin with sequencing and single-cell RNA sequencing showed downregulation of interferon signaling and upregulated RUNX2/3 activity in PBMCs. Considering BNT162b2 vaccination increases the level of interferon-α/γ in serum, our data highlight the immune responses different from the conventional responses to the vaccination, which is possibly the key to understanding the side effects of BNT162b2 vaccination.


Subject(s)
COVID-19 , Myocarditis , Humans , Myocarditis/etiology , BNT162 Vaccine , Epigenomics , Leukocytes, Mononuclear , Longitudinal Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/adverse effects , Chromatin , Interferon-alpha , Interferon-gamma , Antibodies, Viral
15.
Nat Commun ; 14(1): 2976, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-20237769

ABSTRACT

Studies of comparative mRNA booster effectiveness among high-risk populations can inform mRNA booster-specific guidelines. The study emulated a target trial of COVID-19 vaccinated U.S. Veterans who received three doses of either mRNA-1273 or BNT162b2 vaccines. Participants were followed for up to 32 weeks between July 1, 2021 to May 30, 2022. Non-overlapping populations were average and high risk; high-risk sub-groups were age ≥65 years, high-risk co-morbid conditions, and immunocompromising conditions. Of 1,703,189 participants, 10.9 per 10,000 persons died or were hospitalized with COVID-19 pneumonia over 32 weeks (95% CI: 10.2, 11.8). Although relative risks of death or hospitalization with COVID-19 pneumonia were similar across at-risk groups, absolute risk varied when comparing three doses of BNT162b2 with mRNA-1273 (BNT162b2 minus mRNA-1273) between average-risk and high-risk populations, confirmed by the presence of additive interaction. The risk difference of death or hospitalization with COVID-19 pneumonia for high-risk populations was 2.2 (0.9, 3.6). Effects were not modified by predominant viral variant. In this work, the risk of death or hospitalization with COVID-19 pneumonia over 32 weeks was lower among high-risk populations who received three doses of mRNA-1273 vaccine instead of BNT162b2 vaccine; no difference was found among the average-risk population and age >65 sub-group.


Subject(s)
COVID-19 , Veterans , Humans , Aged , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Hospitalization , RNA, Messenger
16.
Hum Vaccin Immunother ; 19(1): 2214495, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-20237704

ABSTRACT

The rapid emergence of COVID-19 variants of concern (VOCs) has hindered vaccine uptake. To inform policy, we investigated the effectiveness of the BNT162b2 vaccination among adolescents against symptomatic and severe COVID-19 diseases using mostly real-world data (15 studies). We searched international databases until May 2022 and used Cochrane's risk of bias tools for critical appraisal. Random effects models were used to examine overall vaccine effectiveness (VE) across studies (general inverse-variance) and the effect of circulating VOCs on VE (log relative ratio and VE). Meta-regression assessed the effect of age and time on VE (restricted-maximum likelihood). BNT162b2 VE against PCR-confirmed SARS-CoV-2 was 82.7% (95%CI: 78.37-87.31%). VE was higher for severe (88%) than non-severe (35%) outcomes and declining over time improved following booster dose in omicron era [73%(95%CI:65-81%)]. Fully vaccinated adolescents are protected from COVID-19 circulating VOCs by BNT162b2 especially for the need of critical care or life support.


Subject(s)
COVID-19 , Adolescent , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Vaccination , RNA, Messenger
17.
Thromb Res ; 228: 137-144, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20237228

ABSTRACT

INTRODUCTION: Reported thromboembolic events after SARS-CoV-2 vaccinations are still raising concerns, predominantly in non-scientific population. The aim of our study was to investigate the differences between haemostasis and inflammatory markers in the subjects vaccinated with mRNA BNT162b2 and vector Ad26.CoV2.S vaccine. MATERIALS AND METHODS: The study included 87 subjects vaccinated with mRNA BNT162b2 and 84 with Ad26.CoV2.S vaccine. All the laboratory parameters (TAT, F 1 + 2, IL-6, CRP, big endothelin-1, platelets, fibrinogen, D-dimers, VWF activity) were investigated for the mRNA vaccine at five (before the first dose, 7 and 14 days after the first and second vaccine dose), and three time points (before the first dose, 7 and 14 days after) for the vector vaccine, respectively. All the markers were measured by well-established laboratory methods. RESULTS: Our results have shown statistically higher CRP levels in the vector group 7 days after vaccination (P = 0.014). Furthermore, study has revealed statistically significant rise in D-dimers (P = 0.004) between tested time points in both vaccine groups but without clinical repercussions. CONCLUSION: Although statistically significant changes in haemostasis markers have been obtained, they remained clinically irrelevant. Thus, our study implicates that there is no plausible scientific evidence of a significant disruption in the coagulation and inflammatory processes after vaccination with BNT162b2 mRNA and Ad26.CoV2.S vector SARS-CoV-2 vaccines.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Vaccination/adverse effects , Blood Coagulation , RNA, Messenger
18.
Sci Rep ; 13(1): 9607, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20237193

ABSTRACT

Several clinical trials have shown that the humoral response produced by anti-spike antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines gradually declines. The kinetics, durability and influence of epidemiological and clinical factors on cellular immunity have not been fully elucidated. We analyzed cellular immune responses elicited by BNT162b2 mRNA vaccines in 321 health care workers using whole blood interferon-gamma (IFN-γ) release assays. IFN-γ, induced by CD4 + and CD8 + T cells stimulated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike epitopes (Ag2), levels were highest at 3 weeks after the second vaccination (6 W) and decreased by 37.4% at 3 months (4 M) and 60.0% at 6 months (7 M), the decline of which seemed slower than that of anti-spike antibody levels. Multiple regression analysis revealed that the levels of IFN-γ induced by Ag2 at 7 M were significantly correlated with age, dyslipidemia, focal adverse reactions to full vaccination, lymphocyte and monocyte counts in whole blood, Ag2 levels before the second vaccination, and Ag2 levels at 6 W. We clarified the dynamics and predictive factors for the long-lasting effects of cellular immune responses. The results emphasize the need for a booster vaccine from the perspective of SARS-CoV-2 vaccine-elicited cellular immunity.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Immunity, Cellular , Interferon-gamma , RNA, Messenger/genetics
19.
Virol J ; 20(1): 112, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20236982

ABSTRACT

BACKGROUND/AIMS: Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best policies to control COVID-19 pandemic. The serological response to COVID-19 vaccination in Taiwanese patients with different comorbidities is elusive. METHODS: Uninfected subjects who received 3 doses of mRNA vaccines (BNT162b2 [Pfizer-BioNTech, BNT] and mRNA-1273 [Moderna]), viral vector-based vaccines (ChAdOx1-S (AZD1222, AZ) or protein subunit vaccines (Medigen COVID-19 vaccine) were prospectively enrolled. The SARS-CoV-2-IgG spike antibody level was determined within three months after the 3rd dose of vaccination. The Charlson Comorbidity Index (CCI) was applied to determine the association between vaccine titers and underlying comorbidities. RESULTS: A total of 824 subjects were enrolled in the current study. The proportions of CCI scores of 0-1, 2-3 and > 4 were 52.8% (n = 435), 31.3% (n = 258) and 15.9% (n = 131), respectively. The most commonly used vaccination combination was AZ-AZ-Moderna (39.2%), followed by Moderna-Moderna-Moderna (27.8%). The mean vaccination titer was 3.11 log BAU/mL after a median of 48 days after the 3rd dose. Factors associated with potentially effective neutralization capacity (IgG level ≥ 4160 AU/mL) included age ≥ 60 years (odds ratio [OR]/95% confidence interval [CI]: 0.50/0.34-0.72, P < 0.001), female sex (OR/CI: 1.85/1.30-2.63, P = 0.001), Moderna-Moderna-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 6.49/3.90-10.83, P < 0.001), BNT-BNT-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 7.91/1.82-34.3, P = 0.006) and a CCI score ≥ 4 (OR/CI: 0.53/0.34-0.82, P = 0.004). There was a decreasing trend in antibody titers with increasing CCI scores (trend P < 0.001). Linear regression analysis revealed that higher CCI scores (ß: - 0.083; 95% CI: - 0.094-0.011, P = 0.014) independently correlated with low IgG spike antibody levels. CONCLUSIONS: Subjects with more comorbidities had a poor serological response to 3 doses of COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Female , Middle Aged , BNT162 Vaccine , ChAdOx1 nCoV-19 , Pandemics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Comorbidity , Immunoglobulin G
20.
BMJ Open ; 13(5): e071397, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-20236822

ABSTRACT

OBJECTIVE: Among persons with immune-mediated inflammatory diseases (IMIDs) who received SARS-CoV-2 vaccines, we compared postvaccine antibody responses and IMID disease activity/states. DESIGN: Single-centre prospective cohort study. SETTING: Specialty ambulatory clinics in central Canada. PARTICIPANTS: People with inflammatory arthritis (n=78; 77% rheumatoid arthritis), systemic autoimmune rheumatic diseases (n=84; 57% lupus), inflammatory bowel disease (n=93; 43% Crohn's) and multiple sclerosis (n=72; 71% relapsing-remitting) (female 79.4%, white 84.7%, mean (SD) age 56.0 (14.3) years) received COVID-19 vaccinations between March 2021 and September 2022. PRIMARY OUTCOME: Postvaccination anti-spike, anti-receptor binding domain (anti-RBD) and anti-nucleocapsid (anti-NC) IgG antibodies tested by multiplex immunoassays compared across vaccine regimens and with responses in 370 age-matched and sex-matched vaccinated controls. SECONDARY OUTCOMES: COVID-19 infection and self-reported IMID disease activity/state. RESULTS: Most (216/327, 66.1%) received homologous messenger RNA (mRNA) (BNT162b2 or mRNA1273) vaccines, 2.4% received homologous ChAdOx1 and 30.6% received heterologous vaccines (23.9% ChAdOx1/mRNA, 6.4% heterologous mRNA) for their first two vaccines (V1, V2). Seroconversion rates were 52.0% (91/175) for post-V1 anti-spike and 58.9% (103/175) for anti-RBD; 91.5% (214/234) for post-V2 anti-spike and 90.2% (211/234) for anti-RBD; and were lower than controls (post-V2 anti-spike 98.1% (360/370), p<0.0001). Antibody titres decreased 3 months after V2 but increased 1 month after the third vaccine (V3) and 1 month after the fourth vaccine (V4) (BAU/mL median (IQR), anti-spike 1835 (2448) 1 month post-V2, 629.1 (883.4) 3 months post-V2, 4757.5 (7033.1) 1 month post-V3 and 4356.0 (9393.4) 1 month post-V4; anti-RBD 1686.8 (2199.44) 1 month post-V2, 555.8 (809.3) 3 months post-V2, 4280.3 (6380.6) 1 month post-V3 and 4792.2 (11 673.78) 1 month post-V4). If primed with a vector vaccine, an mRNA vaccine increased antibody titres to those comparable to homologous mRNA vaccines. Anti-RBD and anti-spike titres were higher in anti-NC seropositive (n=31; 25 participants) versus seronegative samples (BAU/mL median (IQR) anti-RBD 11 755.3 (20 373.1) vs 1248.0 (53 278.7); anti-spike 11 254.4 (15 352.6) vs 1313.1 (3106.6); both p<0.001). IMID disease activity/state and rates of self-reported moderate or severe IMID flare were similar across vaccinations. CONCLUSION: Heterologous COVID-19 vaccination improves seroconversion rates following a vector vaccine and does not lead to IMID disease flare. IMIDs benefit from at least three vaccines.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , Female , Middle Aged , COVID-19 Vaccines , BNT162 Vaccine , Immunomodulating Agents , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL