Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
BMC Neurol ; 22(1): 185, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1951107

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic and development of new vaccines, the issue of post-vaccination exacerbation or manifestation of demyelinating central nervous system (CNS) disorders has gained increasing attention. CASE PRESENTATION: We present a case of a 68-year-old woman previously diagnosed with multiple sclerosis (MS) since the 1980s who suffered a rapidly progressive severe sensorimotor paraparesis with loss of bladder and bowel control due to an acute longitudinal extensive transverse myelitis (LETM) after immunization with the mRNA Pfizer-BioNTech COVID-19 vaccine. Detection of Aquaporin-4-antibodies (AQP4) in both serum and CSF led to diagnosis of AQP4-antibody positive neuromyelitis optica spectrum disorder (NMOSD). Treatment with intravenous corticosteroids and plasmapheresis led to a slight improvement of the patient's symptoms. CONCLUSIONS: Pathogenic mechanisms of post-vaccination occurrence of NMOSD are still unknown. However, cases like this should make aware of rare neurological disorders manifesting after vaccination and potentially contribute to improvement of management of vaccinating patients with inflammatory CNS disorders in the future. So far two cases of AQP4-antibody positive NMOSD have been reported in association with viral vector COVID-19 vaccines. To our knowledge, we report the first case of AQP4-antibody positive NMOSD after immunization with an mRNA COVID-19-vaccine.


Subject(s)
BNT162 Vaccine , COVID-19 , Multiple Sclerosis , Myelitis, Transverse , Neuromyelitis Optica , Aged , Aquaporin 4/blood , Aquaporin 4/cerebrospinal fluid , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Disease Progression , Female , Humans , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/complications , Myelitis, Transverse/chemically induced , Myelitis, Transverse/diagnosis , Myelitis, Transverse/etiology , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/etiology , Pandemics , RNA, Messenger , Vaccination/adverse effects
2.
N Engl J Med ; 387(6): 525-532, 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1947717

ABSTRACT

BACKGROUND: Since it was first identified in early November 2021, the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread quickly and replaced the B.1.617.2 (delta) variant as the dominant variant in many countries. Data on the real-world effectiveness of vaccines against the omicron variant in children are lacking. METHODS: In a study conducted from January 21, 2022, through April 8, 2022, when the omicron variant was spreading rapidly, we analyzed data on children in Singapore who were 5 to 11 years of age. We assessed the incidences of all reported SARS-CoV-2 infections (confirmed on polymerase-chain-reaction [PCR] assay, rapid antigen testing, or both), SARS-CoV-2 infections confirmed on PCR assay, and coronavirus disease 2019 (Covid-19)-related hospitalizations among unvaccinated, partially vaccinated (≥1 day after the first dose of vaccine and up to 6 days after the second dose), and fully vaccinated children (≥7 days after the second dose). Poisson regression was used to estimate vaccine effectiveness from the incidence rate ratio of outcomes. RESULTS: A total of 255,936 children were included in the analysis. Among unvaccinated children, the crude incidence rates of all reported SARS-CoV-2 infections, PCR-confirmed SARS-CoV-2 infections, and Covid-19-related hospitalizations were 3303.5, 473.8, and 30.0 per 1 million person-days, respectively. Among partially vaccinated children, vaccine effectiveness was 13.6% (95% confidence interval [CI], 11.7 to 15.5) against all SARS-CoV-2 infections, 24.3% (95% CI, 19.5 to 28.9) against PCR-confirmed SARS-CoV-2 infection, and 42.3% (95% CI, 24.9 to 55.7) against Covid-19-related hospitalization; in fully vaccinated children, vaccine effectiveness was 36.8% (95% CI, 35.3 to 38.2), 65.3% (95% CI, 62.0 to 68.3), and 82.7% (95% CI, 74.8 to 88.2), respectively. CONCLUSIONS: During a period when the omicron variant was predominant, BNT162b2 vaccination reduced the risks of SARS-CoV-2 infection and Covid-19-related hospitalization among children 5 to 11 years of age.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , BNT162 Vaccine/pharmacology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Hospitalization/statistics & numerical data , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Singapore/epidemiology , Vaccine Efficacy/statistics & numerical data , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
3.
JAMA ; 327(22): 2210-2219, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1905741

ABSTRACT

Importance: Efficacy of 2 doses of the BNT162b2 COVID-19 vaccine (Pfizer-BioNTech) against COVID-19 was high in pediatric trials conducted before the SARS-CoV-2 Omicron variant emerged. Among adults, estimated vaccine effectiveness (VE) of 2 BNT162b2 doses against symptomatic Omicron infection was reduced compared with prior variants, waned rapidly, and increased with a booster. Objective: To evaluate the association of symptomatic infection with prior vaccination with BNT162b2 to estimate VE among children and adolescents during Omicron variant predominance. Design, Setting, and Participants: A test-negative, case-control analysis was conducted using data from 6897 pharmacy-based, drive-through SARS-CoV-2 testing sites across the US from a single pharmacy chain in the Increasing Community Access to Testing platform. This analysis included 74 208 tests from children 5 to 11 years of age and 47 744 tests from adolescents 12 to 15 years of age with COVID-19-like illness who underwent SARS-CoV-2 nucleic acid amplification testing from December 26, 2021, to February 21, 2022. Exposures: Two BNT162b2 doses 2 weeks or more before SARS-CoV-2 testing vs no vaccination for children; 2 or 3 doses 2 weeks or more before testing vs no vaccination for adolescents (who are recommended to receive a booster dose). Main Outcomes and Measures: Symptomatic infection. The adjusted odds ratio (OR) for the association of prior vaccination and symptomatic SARS-CoV-2 infection was used to estimate VE: VE = (1 - OR) × 100%. Results: A total of 30 999 test-positive cases and 43 209 test-negative controls were included from children 5 to 11 years of age, as well as 22 273 test-positive cases and 25 471 test-negative controls from adolescents 12 to 15 years of age. The median age among those with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. At 2 to 4 weeks after dose 2, among children, the adjusted OR was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and among adolescents, the OR was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]). During month 2 after dose 2, among children, the OR was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) and among adolescents, the OR was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]). Among adolescents, the booster dose OR 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]). Conclusions and Relevance: Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Child , Child, Preschool , Female , Humans , Immunization, Secondary , Male , Vaccination
4.
N Engl J Med ; 387(3): 227-236, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1908352

ABSTRACT

BACKGROUND: Limited evidence is available on the real-world effectiveness of the BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) and specifically against infection with the omicron variant among children 5 to 11 years of age. METHODS: Using data from the largest health care organization in Israel, we identified a cohort of children 5 to 11 years of age who were vaccinated on or after November 23, 2021, and matched them with unvaccinated controls to estimate the vaccine effectiveness of BNT162b2 among newly vaccinated children during the omicron wave. Vaccine effectiveness against documented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and symptomatic Covid-19 was estimated after the first and second vaccine doses. The cumulative incidence of each outcome in the two study groups through January 7, 2022, was estimated with the use of the Kaplan-Meier estimator, and vaccine effectiveness was calculated as 1 minus the risk ratio. Vaccine effectiveness was also estimated in age subgroups. RESULTS: Among 136,127 eligible children who had been vaccinated during the study period, 94,728 were matched with unvaccinated controls. The estimated vaccine effectiveness against documented infection was 17% (95% confidence interval [CI], 7 to 25) at 14 to 27 days after the first dose and 51% (95% CI, 39 to 61) at 7 to 21 days after the second dose. The absolute risk difference between the study groups at days 7 to 21 after the second dose was 1905 events per 100,000 persons (95% CI, 1294 to 2440) for documented infection and 599 events per 100,000 persons (95% CI, 296 to 897) for symptomatic Covid-19. The estimated vaccine effectiveness against symptomatic Covid-19 was 18% (95% CI, -2 to 34) at 14 to 27 days after the first dose and 48% (95% CI, 29 to 63) at 7 to 21 days after the second dose. We observed a trend toward higher vaccine effectiveness in the youngest age group (5 or 6 years of age) than in the oldest age group (10 or 11 years of age). CONCLUSIONS: Our findings suggest that as omicron was becoming the dominant variant, two doses of the BNT162b2 messenger RNA vaccine provided moderate protection against documented SARS-CoV-2 infection and symptomatic Covid-19 in children 5 to 11 years of age. (Funded by the European Union through the VERDI project and others.).


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Humans , Israel/epidemiology , SARS-CoV-2/drug effects , Vaccine Efficacy/statistics & numerical data , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/therapeutic use
5.
Science ; 377(6603): eabq1841, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1891726

ABSTRACT

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Subject(s)
B-Lymphocytes , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , T-Lymphocytes , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
6.
N Engl J Med ; 387(1): 21-34, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1890356

ABSTRACT

BACKGROUND: The protection conferred by natural immunity, vaccination, and both against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with the BA.1 or BA.2 sublineages of the omicron (B.1.1.529) variant is unclear. METHODS: We conducted a national, matched, test-negative, case-control study in Qatar from December 23, 2021, through February 21, 2022, to evaluate the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), natural immunity due to previous infection with variants other than omicron, and hybrid immunity (previous infection and vaccination) against symptomatic omicron infection and against severe, critical, or fatal coronavirus disease 2019 (Covid-19). RESULTS: The effectiveness of previous infection alone against symptomatic BA.2 infection was 46.1% (95% confidence interval [CI], 39.5 to 51.9). The effectiveness of vaccination with two doses of BNT162b2 and no previous infection was negligible (-1.1%; 95% CI, -7.1 to 4.6), but nearly all persons had received their second dose more than 6 months earlier. The effectiveness of three doses of BNT162b2 and no previous infection was 52.2% (95% CI, 48.1 to 55.9). The effectiveness of previous infection and two doses of BNT162b2 was 55.1% (95% CI, 50.9 to 58.9), and the effectiveness of previous infection and three doses of BNT162b2 was 77.3% (95% CI, 72.4 to 81.4). Previous infection alone, BNT162b2 vaccination alone, and hybrid immunity all showed strong effectiveness (>70%) against severe, critical, or fatal Covid-19 due to BA.2 infection. Similar results were observed in analyses of effectiveness against BA.1 infection and of vaccination with mRNA-1273. CONCLUSIONS: No discernable differences in protection against symptomatic BA.1 and BA.2 infection were seen with previous infection, vaccination, and hybrid immunity. Vaccination enhanced protection among persons who had had a previous infection. Hybrid immunity resulting from previous infection and recent booster vaccination conferred the strongest protection. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Immunity, Innate , Immunization , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Humans , Immunity, Innate/immunology , Immunization, Secondary , Recurrence , SARS-CoV-2/immunology , Vaccination
7.
Br J Haematol ; 198(4): 668-679, 2022 08.
Article in English | MEDLINE | ID: covidwho-1874397

ABSTRACT

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hematopoietic Stem Cell Transplantation , Age Factors , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , Bone Marrow Transplantation/adverse effects , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroconversion , Transplantation, Homologous/adverse effects , Vaccination/adverse effects
8.
N Engl J Med ; 386(23): 2201-2212, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1864786

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides natural immunity against reinfection. Recent studies have shown waning of the immunity provided by the BNT162b2 vaccine. The time course of natural and hybrid immunity is unknown. METHODS: Using the Israeli Ministry of Health database, we extracted data for August and September 2021, when the B.1.617.2 (delta) variant was predominant, on all persons who had been previously infected with SARS-CoV-2 or who had received coronavirus 2019 vaccine. We used Poisson regression with adjustment for confounding factors to compare the rates of infection as a function of time since the last immunity-conferring event. RESULTS: The number of cases of SARS-CoV-2 infection per 100,000 person-days at risk (adjusted rate) increased with the time that had elapsed since vaccination with BNT162b2 or since previous infection. Among unvaccinated persons who had recovered from infection, this rate increased from 10.5 among those who had been infected 4 to less than 6 months previously to 30.2 among those who had been infected 1 year or more previously. Among persons who had received a single dose of vaccine after previous infection, the adjusted rate was low (3.7) among those who had been vaccinated less than 2 months previously but increased to 11.6 among those who had been vaccinated at least 6 months previously. Among previously uninfected persons who had received two doses of vaccine, the adjusted rate increased from 21.1 among those who had been vaccinated less than 2 months previously to 88.9 among those who had been vaccinated at least 6 months previously. CONCLUSIONS: Among persons who had been previously infected with SARS-CoV-2 (regardless of whether they had received any dose of vaccine or whether they had received one dose before or after infection), protection against reinfection decreased as the time increased since the last immunity-conferring event; however, this protection was higher than that conferred after the same time had elapsed since receipt of a second dose of vaccine among previously uninfected persons. A single dose of vaccine after infection reinforced protection against reinfection.


Subject(s)
COVID-19 , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunity, Innate , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2 , Time Factors , Viral Vaccines/immunology , Viral Vaccines/therapeutic use
9.
Cell Rep Med ; 3(5): 100631, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1799660

ABSTRACT

Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
10.
N Engl J Med ; 386(17): 1603-1614, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1788353

ABSTRACT

BACKGROUND: With large waves of infection driven by the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), alongside evidence of waning immunity after the booster dose of coronavirus disease 2019 (Covid-19) vaccine, several countries have begun giving at-risk persons a fourth vaccine dose. METHODS: To evaluate the early effectiveness of a fourth dose of the BNT162b2 vaccine for the prevention of Covid-19-related outcomes, we analyzed data recorded by the largest health care organization in Israel from January 3 to February 18, 2022. We evaluated the relative effectiveness of a fourth vaccine dose as compared with that of a third dose given at least 4 months earlier among persons 60 years of age or older. We compared outcomes in persons who had received a fourth dose with those in persons who had not, individually matching persons from these two groups with respect to multiple sociodemographic and clinical variables. A sensitivity analysis was performed with the use of parametric Poisson regression. RESULTS: The primary analysis included 182,122 matched pairs. Relative vaccine effectiveness in days 7 to 30 after the fourth dose was estimated to be 45% (95% confidence interval [CI], 44 to 47) against polymerase-chain-reaction-confirmed SARS-CoV-2 infection, 55% (95% CI, 53 to 58) against symptomatic Covid-19, 68% (95% CI, 59 to 74) against Covid-19-related hospitalization, 62% (95% CI, 50 to 74) against severe Covid-19, and 74% (95% CI, 50 to 90) against Covid-19-related death. The corresponding estimates in days 14 to 30 after the fourth dose were 52% (95% CI, 49 to 54), 61% (95% CI, 58 to 64), 72% (95% CI, 63 to 79), 64% (95% CI, 48 to 77), and 76% (95% CI, 48 to 91). In days 7 to 30 after a fourth vaccine dose, the difference in the absolute risk (three doses vs. four doses) was 180.1 cases per 100,000 persons (95% CI, 142.8 to 211.9) for Covid-19-related hospitalization and 68.8 cases per 100,000 persons (95% CI, 48.5 to 91.9) for severe Covid-19. In sensitivity analyses, estimates of relative effectiveness against documented infection were similar to those in the primary analysis. CONCLUSIONS: A fourth dose of the BNT162b2 vaccine was effective in reducing the short-term risk of Covid-19-related outcomes among persons who had received a third dose at least 4 months earlier. (Funded by the Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.).


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Immunization, Secondary/statistics & numerical data , Israel/epidemiology , Middle Aged , RNA, Messenger , Treatment Outcome
11.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1692473

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
12.
Clin Gastroenterol Hepatol ; 20(6): e1263-e1282, 2022 06.
Article in English | MEDLINE | ID: covidwho-1634596

ABSTRACT

BACKGROUND & AIMS: Studies have shown decreased response to coronavirus disease 2019 (COVID-19) vaccinations in some populations. In addition, it is possible that vaccine-triggered immune activation could trigger immune dysregulation and thus exacerbate inflammatory bowel diseases (IBD). In this population-based study we used the epi-Israeli IBD Research Nucleus validated cohort to explore the effectiveness of COVID-19 vaccination in IBD and to assess its effect on disease outcomes. METHODS: We included all IBD patients insured in 2 of the 4 Israeli health maintenance organizations, covering 35% of the population. Patients receiving 2 Pfizer-BioNTech BNT162b2 vaccine doses between December 2020 and June 2021 were individually matched to non-IBD controls. To assess IBD outcomes, we matched vaccinated to unvaccinated IBD patients, and response was analyzed per medical treatment. RESULTS: In total, 12,109 IBD patients received 2 vaccine doses, of whom 4946 were matched to non-IBD controls (mean age, 51 ± 16 years; median follow-up, 22 weeks; interquartile range, 4-24). Fifteen patients in each group (0.3%) developed COVID-19 after vaccination (odds ratio, 1; 95% confidence interval, 0.49-2.05; P = 1.0). Patients on tumor necrosis factor (TNF) inhibitors and/or corticosteroids did not have a higher incidence of infection. To explore IBD outcomes, 707 vaccinated IBD patients were compared with unvaccinated IBD patients by stringent matching (median follow-up, 14 weeks; interquartile range, 2.3-20.4). The risk of exacerbation was 29% in the vaccinated patients compared with 26% in unvaccinated patients (P = .3). CONCLUSIONS: COVID-19 vaccine effectiveness in IBD patients is comparable with that in non-IBD controls and is not influenced by treatment with TNF inhibitors or corticosteroids. The IBD exacerbation rate did not differ between vaccinated and unvaccinated patients.


Subject(s)
BNT162 Vaccine , COVID-19 , Inflammatory Bowel Diseases , Adult , Aged , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , Chronic Disease , Disease Progression , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/drug therapy , Middle Aged , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors/therapeutic use
14.
Arthritis Rheumatol ; 74(2): 284-294, 2022 02.
Article in English | MEDLINE | ID: covidwho-1594369

ABSTRACT

OBJECTIVE: To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multiethnic/multiracial cohort of patients with systemic lupus erythematosus (SLE). METHODS: Ninety SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; interferon-γ (IFNγ) production was measured by enzyme-linked immunospot (ELISpot) assay in order to assess T cell responses. Disease activity was measured by the hybrid SLE Disease Activity Index (SLEDAI), and flares were identified according to the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index. RESULTS: Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD compared to fully vaccinated controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-double-stranded DNA antibody level prior to vaccination were associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and correlated with antigen-specific IFNγ production determined by ELISpot. In a subset of patients with poor antibody responses, IFNγ production was similarly diminished. Pre- and postvaccination SLEDAI scores were similar in both groups. Postvaccination flares occurred in 11.4% of patients; 1.3% of these were severe. CONCLUSION: In a multiethnic/multiracial study of SLE patients, 29% had a low response to the COVID-19 vaccine which was associated with receiving immunosuppressive therapy. Reassuringly, severe disease flares were rare. While minimal protective levels remain unknown, these data suggest that protocol development is needed to assess the efficacy of booster vaccination.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunocompromised Host , Immunogenicity, Vaccine , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Ad26COVS1/therapeutic use , Adult , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/therapeutic use , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Enzyme-Linked Immunospot Assay , Female , Glucocorticoids/therapeutic use , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Neutralization Tests , Prednisone/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Symptom Flare Up
15.
Eur J Clin Invest ; 52(2): e13713, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1541727

ABSTRACT

BACKGROUND: COVID-19 and some anti-SARS-CoV-2 vaccines trigger a humoral autoimmune response against a broad range of endogenous components, which may affect recipients' prognosis in predisposed individuals. Autoantibodies directed against apolipoprotein A-1 (AAA1 IgG) the major protein fraction of High Density Lipoprotein have been shown to be raised in COVID-19 and in rheumatoid arthritis (RA) patients and other populations where they have been associated with poorer outcomes. We wanted to assess the impact of anti-SARS-CoV-2 mRNA-based vaccination on AAA1 autoimmune biomarkers in RA patients. METHODS: 20 healthy controls and 77 RA mRNA-based vaccinated patients were collected at baseline, 3 weeks after the first vaccination, 2 and 8 weeks after the second vaccination. AAA1 and SARS-CoV-2 serologies were measured by immunoassays. Systemic and local symptoms occurring during the vaccination protocol were recorded. RESULTS: mRNA-based vaccination induced a significant increase in median AAA1 IgG levels in both healthy controls and RA patients overtime. However, in both populations, these medians trend did not translate into significant increase in AAA1 IgG seropositivity rates despite evolving from 5 to 10% in healthy controls, and from 9 to 12.9% in RA patients. No associations were retrieved between AAA1 IgG and symptoms of any kind during the vaccination protocol. CONCLUSIONS: mRNA-based vaccination seems to induce a light AAA1 IgG response in immunocompetent individuals within 2 months after the last injection. Although we did not observe any warning signs, the formal demonstration of the harmlessness of such biological warrants further studies.


Subject(s)
Apolipoprotein A-I/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Immunity, Humoral/immunology , mRNA Vaccines/adverse effects , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Aged , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Female , Humans , Immunocompetence , Immunoglobulin G , Male , Middle Aged , SARS-CoV-2 , mRNA Vaccines/therapeutic use
16.
JAMA Intern Med ; 182(2): 179-184, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1540033

ABSTRACT

Importance: With the evidence of waning immunity of the mRNA vaccine BNT162b2 (Pfizer-BioNTech), a nationwide third-dose (booster) vaccination campaign was initiated in Israel during August 2021; other countries have begun to administer a booster shot as well. Objective: To evaluate the initial short-term additional benefit of a 3-dose vs a 2-dose regimen against infection of SARS-CoV-2. Design, Setting, and Participants: This preliminary retrospective case-control study used 2 complementary approaches: a test-negative design and a matched case-control design. Participants were included from the national centralized database of Maccabi Healthcare Services, an Israeli healthcare maintenance organization covering 2.5 million members. Data were collected between March 1, 2020, and October 4, 2021, and analyses focused on the period from August 1, 2021, to October 4, 2021, because the booster dose was widely administered from August 1 onward. Exposures: Either 2 doses or 3 doses of the BNT162b2 vaccine. Main Outcomes and Measures: The reduction in the odds of a positive SARS-CoV-2 polymerase chain reaction (PCR) test at different time intervals following receipt of the booster dose (0-6, 7-13, 14-20, 21-27, and 28-65 days) compared with receiving only 2 doses. Results: The study population included 306 710 members of Maccabi Healthcare Services who were 40 years and older (55% female) and received either 2 or 3 doses of the BNT162b2 vaccine and did not have a positive PCR test result for SARS-CoV-2 prior to the start of the follow-up period. During this period, there were 500 232 PCR tests performed, 227 380 among those who received 2 doses and 272 852 among those who received 3 doses, with 14 989 (6.6%) and 4941 (1.8%) positive test results in each group, respectively. Comparing those who received a booster and those who received 2 doses, there was an estimated odds ratio of 0.14 (95% CI, 0.13-0.15) 28 to 65 days following receipt of the booster (86% reduction in the odds of testing positive for SARS-CoV-2). Conclusion and Relevance: Previous studies have demonstrated that vaccine-derived protection against SARS-CoV-2 wanes over time. In this case-control analysis, we showed an association between receipt of the booster dose and a reduction in the odds of testing positive for SARS-CoV-2, potentially counteracting waning immunity in the short term. Further monitoring of data from this population is needed to determine the duration of immunity following the booster.


Subject(s)
BNT162 Vaccine/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Adult , Case-Control Studies , Comparative Effectiveness Research , Female , Humans , Incidence , Male , Retrospective Studies , Time Factors
18.
Am J Obstet Gynecol ; 226(2): 236.e1-236.e14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1347471

ABSTRACT

BACKGROUND: Concerns have been raised regarding a potential surge of COVID-19 in pregnancy, secondary to the rising numbers of COVID-19 in the community, easing of societal restrictions, and vaccine hesitancy. Although COVID-19 vaccination is now offered to all pregnant women in the United Kingdom; limited data exist on its uptake and safety. OBJECTIVE: This study aimed to investigate the uptake and safety of COVID-19 vaccination among pregnant women. STUDY DESIGN: This was a cohort study of pregnant women who gave birth at St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom, between March 1, 2020, and July 4, 2021. The primary outcome was uptake of COVID-19 vaccination and its determinants. The secondary outcomes were perinatal safety outcomes. Data were collected on COVID-19 vaccination uptake, vaccination type, gestational age at vaccination, and maternal characteristics, including age, parity, ethnicity, index of multiple deprivation score, and comorbidities. Further data were collected on perinatal outcomes, including stillbirth (fetal death at ≥24 weeks' gestation), preterm birth, fetal and congenital abnormalities, and intrapartum complications. Pregnancy and neonatal outcomes of women who received the vaccine were compared with that of a matched cohort of women with balanced propensity scores. Effect magnitudes of vaccination on perinatal outcomes were reported as mean differences or odds ratios with 95% confidence intervals. Factors associated with antenatal vaccination were assessed with logistic regression analysis. RESULTS: Data were available for 1328 pregnant women of whom 140 received at least 1 dose of the COVID-19 vaccine before giving birth and 1188 women who did not; 85.7% of those vaccinated received their vaccine in the third trimester of pregnancy and 14.3% in the second trimester of pregnancy. Of those vaccinated, 127 (90.7%) received a messenger RNA vaccine and 13 (9.3%) a viral vector vaccine. There was evidence of reduced vaccine uptake in younger women (P=.001), women with high levels of deprivation (ie, fifth quintile of the index of multiple deprivation; P=.008), and women of Afro-Caribbean or Asian ethnicity compared with women of White ethnicity (P<.001). Women with prepregnancy diabetes mellitus had increased vaccine uptake (P=.008). In the multivariable model the fifth deprivation quintile (most deprived) (adjusted odds ratio, 0.10; 95% confidence interval, 0.02-0.10; P=.003) and Afro-Caribbean ethnicity (adjusted odds ratio, 0.27; 95% confidence interval, 0.06-0.85; P=.044) were significantly associated with lower antenatal vaccine uptake, whereas prepregnancy diabetes mellitus was significantly associated with higher antenatal vaccine uptake (adjusted odds ratio, 10.5; 95% confidence interval, 1.74-83.2; P=.014). In a propensity score-matched cohort, the rates of adverse pregnancy outcomes of 133 women who received at least 1 dose of the COVID-19 vaccine in pregnancy were similar to that of unvaccinated pregnant women (P>.05 for all): stillbirth (0.0% vs 0.2%), fetal abnormalities (2.2% vs 2.5%), postpartum hemorrhage (9.8% vs 9.0%), cesarean delivery (30.8% vs 34.1%), small for gestational age (12.0% vs 12.8%), maternal high-dependency unit or intensive care admission (6.0% vs 4.0%), or neonatal intensive care unit admission (5.3% vs 5.0%). Intrapartum pyrexia (3.7% vs 1.0%; P=.046) was significantly increased but the borderline statistical significance was lost after excluding women with antenatal COVID-19 infection (P=.079). Mixed-effects Cox regression showed that vaccination was not significantly associated with birth at <40 weeks' gestation (hazard ratio, 0.93; 95% confidence interval, 0.71-1.23; P=.624). CONCLUSION: Of pregnant women eligible for COVID-19 vaccination, less than one-third accepted COVID-19 vaccination during pregnancy, and they experienced similar pregnancy outcomes with unvaccinated pregnant women. There was lower uptake among younger women, non-White ethnicity, and lower socioeconomic background. This study has contributed to the body of evidence that having COVID-19 vaccination in pregnancy does not alter perinatal outcomes. Clear communication to improve awareness among pregnant women and healthcare professionals on vaccine safety is needed, alongside strategies to address vaccine hesitancy. These strategies include postvaccination surveillance to gather further data on pregnancy outcomes, particularly after first-trimester vaccination, and long-term infant follow-up.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Pregnancy Complications, Infectious/prevention & control , Vaccination Coverage/statistics & numerical data , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Age Factors , Asians , BNT162 Vaccine/therapeutic use , Blacks , Caribbean Region , Case-Control Studies , Cesarean Section/statistics & numerical data , ChAdOx1 nCoV-19/therapeutic use , Congenital Abnormalities/epidemiology , Ethnicity , Female , Fever/epidemiology , Humans , Infant, Small for Gestational Age , Intensive Care Units , Intensive Care Units, Neonatal , Logistic Models , Obstetric Labor Complications/epidemiology , Postpartum Hemorrhage/epidemiology , Pregnancy , Premature Birth/epidemiology , Propensity Score , Proportional Hazards Models , SARS-CoV-2 , Social Deprivation , Social Determinants of Health , Stillbirth/epidemiology , United Kingdom/epidemiology
19.
United European Gastroenterol J ; 9(7): 787-796, 2021 09.
Article in English | MEDLINE | ID: covidwho-1260575

ABSTRACT

BACKGROUND: The novel Coronavirus (SARS-CoV-2) has caused almost 2 million deaths worldwide. Both Food and Drug Administration and European Medicines Agency have recently approved the first COVID-19 vaccines, and a few more are going to be approved soon. METHODS: Several different approaches have been used to stimulate the immune system in mounting a humoral response. As more traditional approaches are under investigation (inactivated virus vaccines, protein subunit vaccines, recombinant virus vaccines), more recent and innovative strategies have been tried (non-replicating viral vector vaccines, RNA based vaccines, DNA based vaccines). RESULTS: Since vaccinations campaigns started in December 2020 in both the US and Europe, gastroenterologists will be one of the main sources of information regarding SARS-CoV 2 vaccination for patients in their practice, including vulnerable patients such as those with Inflammatory Bowel Disease (IBD), patients with chronic liver disease, and GI cancer patients. CONCLUSIONS: Thus, we must ourselves be well educated and updated in order to provide unambiguous counseling to these categories of vulnerable patients. In this commentary, we aim to provide a comprehensive review of both approved COVID-19 vaccines and the ones still under development, and explore potential risks, benefits and prioritization of vaccination.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1/therapeutic use , BNT162 Vaccine/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Gastroenterology , Gastrointestinal Neoplasms/therapy , Humans , Inflammatory Bowel Diseases/therapy , Liver Diseases/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL