Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
2.
Antimicrob Resist Infect Control ; 11(1): 45, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1731546

ABSTRACT

BACKGROUND: Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a catalyst for the development of antimicrobial resistance (AMR). OBJECTIVES: We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differences across hospital and geographic settings. METHODS: We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and geographic setting was also performed to elucidate any differences. RESULTS: Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 24% (95% CI 8-40%; n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1-0.6%; n = 8 studies: I2 = 78%), respectively. Among multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 patients were infected with a resistant organism. CONCLUSIONS: During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied by hospital and geography although there was substantial heterogeneity. Given the variation in patient populations within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to quantify AMR in COVID-19 patients to improve surveillance programs, infection prevention and control practices and antimicrobial stewardship programs globally.


Subject(s)
Bacteria/drug effects , Bacterial Infections/drug therapy , COVID-19/complications , Drug Resistance, Bacterial , Drug Resistance, Fungal , Mycoses/drug therapy , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/etiology , Bacterial Infections/microbiology , COVID-19/virology , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Humans , Mycoses/etiology , Mycoses/microbiology , SARS-CoV-2/physiology
3.
J Med Virol ; 94(4): 1670-1688, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718413

ABSTRACT

Bangladesh is experiencing a second wave of COVID-19 since March 2021, despite the nationwide vaccination drive with ChAdOx1 (Oxford-AstraZeneca) vaccine from early February 2021. Here, we characterized 19 nasopharyngeal swab (NPS) samples from COVID-19 suspect patients using genomic and metagenomic approaches. Screening for SARS-CoV-2 by reverse transcriptase polymerase chain reaction and metagenomic sequencing revealed 17 samples of COVID-19 positive (vaccinated = 10, nonvaccinated = 7) and 2 samples of COVID-19 negative. We did not find any significant correlation between associated factors including vaccination status, age or sex of the patients, diversity or abundance of the coinfected organisms/pathogens, and the abundance of SARS-CoV-2. Though the first wave of the pandemic was dominated by clade 20B, Beta, V2 (South African variant) dominated the second wave (January 2021 to May 2021), while the third wave (May 2021 to September 2021) was responsible for Delta variants of the epidemic in Bangladesh including both vaccinated and unvaccinated infections. Noteworthily, the receptor binding domain (RBD) region of S protein of all the isolates harbored similar substitutions including K417N, E484K, and N501Y that signify the Beta, while D614G, D215G, D80A, A67V, L18F, and A701V substitutions were commonly found in the non-RBD region of Spike proteins. ORF7b and ORF3a genes underwent a positive selection (dN/dS ratio 1.77 and 1.24, respectively), while the overall S protein of the Bangladeshi SARS-CoV-2 isolates underwent negative selection pressure (dN/dS = 0.621). Furthermore, we found different bacterial coinfections like Streptococcus agalactiae, Neisseria meningitidis, Elizabethkingia anophelis, Stenotrophomonas maltophilia, Klebsiella pneumoniae, and Pseudomonas plecoglossicida, expressing a number of antibiotic resistance genes such as tetA and tetM. Overall, this approach provides valuable insights on the SARS-CoV-2 genomes and microbiome composition from both vaccinated and nonvaccinated patients in Bangladesh.


Subject(s)
COVID-19/virology , Metagenomics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/virology , Bangladesh/epidemiology , COVID-19/epidemiology , COVID-19/microbiology , COVID-19/prevention & control , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Drug Resistance, Bacterial/genetics , Female , Genome, Bacterial/genetics , Genome, Viral/genetics , Humans , Male , Microbiota/genetics , Middle Aged , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Selection, Genetic , Vaccination , Viral Proteins/genetics , Young Adult
4.
Commun Biol ; 5(1): 151, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1708032

ABSTRACT

A large gap remains between sequencing a microbial community and characterizing all of the organisms inside of it. Here we develop a novel method to taxonomically bin metagenomic assemblies through alignment of contigs against a reference database. We show that this workflow, BugSplit, bins metagenome-assembled contigs to species with a 33% absolute improvement in F1-score when compared to alternative tools. We perform nanopore mNGS on patients with COVID-19, and using a reference database predating COVID-19, demonstrate that BugSplit's taxonomic binning enables sensitive and specific detection of a novel coronavirus not possible with other approaches. When applied to nanopore mNGS data from cases of Klebsiella pneumoniae and Neisseria gonorrhoeae infection, BugSplit's taxonomic binning accurately separates pathogen sequences from those of the host and microbiota, and unlocks the possibility of sequence typing, in silico serotyping, and antimicrobial resistance prediction of each organism within a sample. BugSplit is available at https://bugseq.com/academic .


Subject(s)
Algorithms , Bacteria/genetics , Computational Biology/methods , Metagenome/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Bacteria/classification , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Internet , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology
5.
Nucleic Acids Res ; 50(D1): D387-D390, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1705079

ABSTRACT

The Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/) stores raw sequencing data and alignment information to enhance reproducibility and facilitate new discoveries through data analysis. Here we note changes in storage designed to increase access and highlight analyses that augment metadata with taxonomic insight to help users select data. In addition, we present three unanticipated applications of taxonomic analysis.


Subject(s)
Bacteria/genetics , Databases, Genetic , Metadata/statistics & numerical data , Software , Viruses/genetics , Bacteria/classification , Base Sequence , High-Throughput Nucleotide Sequencing , Internet , Phylogeny , Reproducibility of Results , SARS-CoV-2/genetics , Sequence Analysis, RNA , Viruses/classification
6.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705332

ABSTRACT

Coinfection rates with other pathogens in coronavirus disease 2019 (COVID-19) varied during the pandemic. We assessed the latest prevalence of coinfection with viruses, bacteria, and fungi in COVID-19 patients for more than one year and its impact on mortality. A total of 436 samples were collected between August 2020 and October 2021. Multiplex real-time PCR, culture, and antimicrobial susceptibility testing were performed to detect pathogens. The coinfection rate of respiratory viruses in COVID-19 patients was 1.4%. Meanwhile, the rates of bacteria and fungi were 52.6% and 10.5% in hospitalized COVID-19 patients, respectively. Respiratory syncytial virus, rhinovirus, Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were the most commonly detected pathogens. Ninety percent of isolated A. baumannii was non-susceptible to carbapenem. Based on a multivariate analysis, coinfection (odds ratio [OR] = 6.095), older age (OR = 1.089), and elevated lactate dehydrogenase (OR = 1.006) were risk factors for mortality as a critical outcome. In particular, coinfection with bacteria (OR = 11.250), resistant pathogens (OR = 11.667), and infection with multiple pathogens (OR = 10.667) were significantly related to death. Screening and monitoring of coinfection in COVID-19 patients, especially for hospitalized patients during the pandemic, are beneficial for better management and survival.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/epidemiology , Coinfection/microbiology , Coinfection/virology , Mycoses/epidemiology , Virus Diseases/epidemiology , Adolescent , Adult , Bacteria/classification , Bacteria/pathogenicity , COVID-19/microbiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/mortality , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/virology , Female , Fungi/classification , Fungi/pathogenicity , Humans , Male , Middle Aged , Prevalence , Republic of Korea/epidemiology , Viruses/classification , Viruses/pathogenicity , Young Adult
7.
Eur Rev Med Pharmacol Sci ; 26(3): 1020-1027, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699173

ABSTRACT

OBJECTIVE: Microorganisms present a global public health problem and are the leading cause of hospital-acquired infections. Therefore, it is essential to study the prevalence of microorganisms in hospital environments. The conclusion from such a study can contribute to identify the areas most likely to be contaminated in a hospital and appropriate measures that can decrease the exposure risk. MATERIALS AND METHODS: The prevalence of microorganisms in hospital air was examined in different departments by obtaining air samples with an impactor before and during the SARS-CoV-2 pandemic. A total of 2145 microorganisms were identified, and the corresponding data were jointly analyzed by area, sampling period, and concentration. RESULTS: The most frequently detected microorganisms in hospital air were Staphylococcus, Micrococcus, Neisseria, and fungi, and the more polluted departments were the hemodialysis department, respiratory department, treatment room, and toilet. Significant differences were found between the concentration of bacteria and fungi before and during the pandemic, which could be related to multiple environmental conditions. Furthermore, SARS-CoV-2 was negative in all the air samples. CONCLUSIONS: Overall, this study confirmed the existence and dynamic characteristics of airborne microorganisms in a hospital. The results contribute to the adaptation of specific measures which can decrease the exposure risk of patients, visitors, and staff.


Subject(s)
Air Microbiology , Bacteria/isolation & purification , Fungi/isolation & purification , Hospitals , Air Pollution, Indoor , Bacteria/classification , Environmental Monitoring , Epidemiological Monitoring , Fungi/classification , Hospital Departments , Pandemics , SARS-CoV-2
8.
Gut Microbes ; 14(1): 2031840, 2022.
Article in English | MEDLINE | ID: covidwho-1692369

ABSTRACT

There is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. 16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. We found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides ssp.). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. Gut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization.


Subject(s)
COVID-19/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/complications , COVID-19/mortality , Disease Progression , Dysbiosis/etiology , Feces/microbiology , Female , Humans , Male , Microbiota , Middle Aged , SARS-CoV-2 , Saliva/microbiology , Severity of Illness Index
9.
Gut Microbes ; 14(1): 2018900, 2022.
Article in English | MEDLINE | ID: covidwho-1585291

ABSTRACT

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Subject(s)
COVID-19/microbiology , COVID-19/physiopathology , Disease Models, Animal , Gastrointestinal Microbiome , Mesocricetus , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , COVID-19/drug therapy , COVID-19/pathology , Cricetinae , Fatty Acids, Volatile/administration & dosage , Fatty Acids, Volatile/metabolism , Humans , Male , SARS-CoV-2/physiology , Severity of Illness Index
10.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574011

ABSTRACT

Coronavirus disease 2019 (Covid-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is now pandemic. While most Covid-19 patients will experience mild symptoms, a small proportion will develop severe disease, which could be fatal. Clinically, Covid-19 patients manifest fever with dry cough, fatigue and dyspnoea, and in severe cases develop into acute respiratory distress syndrome (ARDS), sepsis and multi-organ failure. These severe patients are characterized by hyperinflammation with highly increased pro-inflammatory cytokines including IL-6, IL-17 and TNF-alpha as well as C-reactive protein, which are accompanied by decreased lymphocyte counts. Clinical evidence supports that gut microbiota dysregulation is common in Covid-19 and plays a key role in the pathogenesis of Covid-19. In this narrative review, we summarize the roles of intestinal dysbiosis in Covid-19 pathogenesis and posit that the associated mechanisms are being mediated by gut bacterial metabolites. Based on this premise, we propose possible clinical implications. Various risk factors could be causal for severe Covid-19, and these include advanced age, concomitant chronic disease, SARS-CoV-2 infection of enterocytes, use of antibiotics and psychological distress. Gut dysbiosis is associated with risk factors and severe Covid-19 due to decreased commensal microbial metabolites, which cause reduced anti-inflammatory mechanisms and chronic low-grade inflammation. The preconditioned immune dysregulation enables SARS-CoV-2 infection to progress to an uncontrolled hyperinflammatory response. Thus, a pre-existing gut microbiota that is diverse and abundant could be beneficial for the prevention of severe Covid-19, and supplementation with commensal microbial metabolites may facilitate and augment the treatment of severe Covid-19.


Subject(s)
Bacteria/metabolism , COVID-19/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Dysbiosis/genetics , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/virology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology
11.
Sci Rep ; 11(1): 24042, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574556

ABSTRACT

The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.


Subject(s)
Bacteria/classification , COVID-19/microbiology , Nasopharynx/microbiology , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Case-Control Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Middle Aged , Phylogeny , Symbiosis , Young Adult
12.
mSphere ; 6(6): e0071121, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546463

ABSTRACT

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 µM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.


Subject(s)
Antiviral Agents/pharmacology , Bacteria/metabolism , Culture Media/chemistry , Metabolic Networks and Pathways , Microbiota/physiology , SARS-CoV-2/drug effects , Symbiosis/physiology , Bacteria/chemistry , Bacteria/classification , Bacteria/growth & development , Biological Assay , Cell Line, Tumor , Culture Media/pharmacology , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding
13.
Microbiol Spectr ; 9(3): e0028321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501550

ABSTRACT

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.


Subject(s)
Bacteria/classification , Communicable Diseases/epidemiology , Communicable Diseases/microbiology , Drug Resistance, Bacterial , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , COVID-19/epidemiology , Child , China/epidemiology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Humans , Klebsiella pneumoniae/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Moraxella catarrhalis , Pseudomonas aeruginosa/drug effects , SARS-CoV-2 , Staphylococcus aureus/drug effects , Staphylococcus epidermidis , Streptococcus pneumoniae , Streptococcus pyogenes
14.
Microbiol Spectr ; 9(2): e0005521, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1467670

ABSTRACT

Bacterial-viral interactions in saliva have been associated with morbidity and mortality for respiratory viruses such as influenza and SARS-CoV. However, such transkingdom relationships during SARS-CoV-2 infection are currently unknown. Here, we aimed to elucidate the relationship between saliva microbiota and SARS-CoV-2 in a cohort of newly hospitalized COVID-19 patients and controls. We used 16S rRNA sequencing to compare microbiome diversity and taxonomic composition between COVID-19 patients (n = 53) and controls (n = 59) and based on saliva SARS-CoV-2 viral load as measured using reverse transcription PCR (RT-PCR). The saliva microbiome did not differ markedly between COVID-19 patients and controls. However, we identified significant differential abundance of numerous taxa based on saliva SARS-CoV-2 viral load, including multiple species within Streptococcus and Prevotella. IMPORTANCE Alterations to the saliva microbiome based on SARS-CoV-2 viral load indicate potential biologically relevant bacterial-viral relationships which may affect clinical outcomes in COVID-19 disease.


Subject(s)
Bacteria/classification , COVID-19/pathology , Microbial Interactions/physiology , SARS-CoV-2/isolation & purification , Saliva/microbiology , Bacteria/genetics , Dysbiosis/microbiology , Female , Humans , Male , Microbiota/genetics , Middle Aged , Nasopharynx/microbiology , RNA, Ribosomal, 16S/genetics , Viral Load
15.
Int J Mol Sci ; 22(19)2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1463710

ABSTRACT

The present Special Issue focuses on the latest approaches to health and public health microbiology using multiomics [...].


Subject(s)
Bacteria/growth & development , Holistic Health/standards , Metabolome , Metagenome , Microbiota , Proteome , Public Health/standards , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humans
16.
Nat Commun ; 12(1): 5026, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363491

ABSTRACT

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Prospective Studies , Respiratory Tract Infections/epidemiology , Seasons , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult
17.
J Microbiol ; 59(10): 941-948, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432635

ABSTRACT

Several follow-up studies have found that COVID-19 (coronavirus disease 2019) patients had persistent symptoms after discharge. Gut microbiota play an important role in human health and immune responses. Therefore, this study investigated the gut microbiota of recovered COVID-19 patients and the correlations between gut microbiota and persistent symptoms after discharge. Stool samples were collected from 15 recovered healthcare workers (HCWs) with COVID-19 at three months after discharge, in addition, stool samples were collected from 14 healthy controls (HCs) to perform 16S rRNA gene sequencing between May and July 2020. Compared with HCs, recovered HCWs had reduced bacterial diversity at three months after discharge, with a significantly higher relative abundance of opportunistic pathogens, and a significantly lower relative abundance of beneficial bacteria. In addition, Escherichia unclassified was positively correlated with persistent symptoms at three months after discharge, including fatigue (r = 0.567, p = 0.028), chest tightness after activity (r = 0.687, p = 0.005), and myalgia (r = 0.523, p = 0.045). Intestinibacter bartlettii was positively correlated with anorexia (r = 0.629, p = 0.012) and fatigue (r = 0.545, p = 0.036). However, Faecalibacterium prausnitzii was negatively correlated with chest tightness after activity (r = -0.591, p = 0.02), and Intestinimonas butyriciproducens was negatively correlated with cough (r = -0.635, p = 0.011). In conclusion, the gut microbiota of recovered HCWs with COVID-19 at three months after discharge was different from that of HCs, and altered gut microbiota was correlated with persistent symptoms after discharge, highlighting that gut microbiota may play an important role in the recovery of patients with COVID-19.


Subject(s)
Bacteria/isolation & purification , COVID-19/complications , COVID-19/microbiology , Gastrointestinal Microbiome , Adult , Bacteria/classification , Bacteria/genetics , COVID-19/therapy , COVID-19/virology , Fatigue/etiology , Fatigue/microbiology , Feces/microbiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myalgia/etiology , Myalgia/microbiology , Patient Discharge , Phylogeny , Survivors/statistics & numerical data
18.
Mol Med Rep ; 24(4)2021 10.
Article in English | MEDLINE | ID: covidwho-1395037

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle­aged and elderly populations. Several studies have confirmed that the microbiota­gut­brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α­synuclein (α­syn) in the intestine. Abnormal α­syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α­syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α­syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α­syn in the intestine caused by the GM changes and the increased levels of α­syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α­syn accumulation to relieve the symptoms and progression of PD are described.


Subject(s)
/physiology , Disease Progression , Gastrointestinal Microbiome/physiology , Parkinson Disease/microbiology , alpha-Synuclein/metabolism , Aged , Bacteria/classification , Brain/metabolism , Dopaminergic Neurons/metabolism , Dysbiosis , Humans , Microglia , Middle Aged , Neurodegenerative Diseases , Oxidative Stress , alpha-Synuclein/genetics
19.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380902

ABSTRACT

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , COVID-19/therapy , Respiration, Artificial , SARS-CoV-2/pathogenicity , Adaptive Immunity , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Load , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/mortality , Critical Illness , Female , Hospitalization , Humans , Immunity, Innate , Male , Microbiota , Middle Aged , Odds Ratio , Prognosis , Prospective Studies , Respiratory System/immunology , Respiratory System/microbiology , Respiratory System/virology , SARS-CoV-2/immunology , Viral Load
20.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1360585

ABSTRACT

In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that are associated with long COVID symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have contributed to this draining disease.


Subject(s)
COVID-19/complications , Dysbiosis , Inflammation , Microbiota , Aged , Bacteria/classification , Female , Gastrointestinal Microbiome , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL