Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Mol Sci ; 21(15)2020 Jul 27.
Article in English | MEDLINE | ID: covidwho-1934097

ABSTRACT

Microbial virulence factors encompass a wide range of molecules produced by pathogenic microorganisms, enhancing their ability to evade their host defenses and cause disease [...].


Subject(s)
Bacteria/metabolism , Bacteria/pathogenicity , Virulence Factors/metabolism , Humans , Virulence
2.
Genome Biol ; 23(1): 133, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1896371

ABSTRACT

The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed synthetic DNA screening and pathogen characterization, available for download at www.gitlab.com/treangenlab/seqscreen .


Subject(s)
Machine Learning , Bacteria/genetics , Bacteria/pathogenicity , COVID-19 , Humans , Leukocytes, Mononuclear/virology , Open Reading Frames
4.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705332

ABSTRACT

Coinfection rates with other pathogens in coronavirus disease 2019 (COVID-19) varied during the pandemic. We assessed the latest prevalence of coinfection with viruses, bacteria, and fungi in COVID-19 patients for more than one year and its impact on mortality. A total of 436 samples were collected between August 2020 and October 2021. Multiplex real-time PCR, culture, and antimicrobial susceptibility testing were performed to detect pathogens. The coinfection rate of respiratory viruses in COVID-19 patients was 1.4%. Meanwhile, the rates of bacteria and fungi were 52.6% and 10.5% in hospitalized COVID-19 patients, respectively. Respiratory syncytial virus, rhinovirus, Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were the most commonly detected pathogens. Ninety percent of isolated A. baumannii was non-susceptible to carbapenem. Based on a multivariate analysis, coinfection (odds ratio [OR] = 6.095), older age (OR = 1.089), and elevated lactate dehydrogenase (OR = 1.006) were risk factors for mortality as a critical outcome. In particular, coinfection with bacteria (OR = 11.250), resistant pathogens (OR = 11.667), and infection with multiple pathogens (OR = 10.667) were significantly related to death. Screening and monitoring of coinfection in COVID-19 patients, especially for hospitalized patients during the pandemic, are beneficial for better management and survival.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/epidemiology , Coinfection/microbiology , Coinfection/virology , Mycoses/epidemiology , Virus Diseases/epidemiology , Adolescent , Adult , Bacteria/classification , Bacteria/pathogenicity , COVID-19/microbiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/mortality , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/virology , Female , Fungi/classification , Fungi/pathogenicity , Humans , Male , Middle Aged , Prevalence , Republic of Korea/epidemiology , Viruses/classification , Viruses/pathogenicity , Young Adult
6.
Sci Rep ; 11(1): 24042, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574556

ABSTRACT

The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.


Subject(s)
Bacteria/classification , COVID-19/microbiology , Nasopharynx/microbiology , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Case-Control Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Middle Aged , Phylogeny , Symbiosis , Young Adult
7.
Toxins (Basel) ; 12(4)2020 04 02.
Article in English | MEDLINE | ID: covidwho-1453289

ABSTRACT

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Toxins/metabolism , Lung/microbiology , Respiratory Tract Infections/microbiology , Adaptive Immunity , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Disease Progression , Host-Pathogen Interactions , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , Signal Transduction
8.
Infection ; 49(3): 377-385, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1384709

ABSTRACT

PURPOSE: CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases. METHODS: We searched Pubmed and Google Scholar for CRISPR-based strategies in the diagnosis and treatment of infectious diseases. Reference lists were reviewed and synthesized for narrative review. RESULTS: CRISPR-based strategies represent a novel approach to many challenging infectious diseases. CRISPR technologies can be harnessed to create rapid, low-cost diagnostic systems, as well as to identify drug-resistance genes. Therapeutic strategies, such as CRISPR systems that cleave integrated viral genomes or that target resistant bacteria, are in development. CRISPR-based therapies for emerging viruses, such as SARS-CoV-2, have also been proposed. Finally, CRISPR systems can be used to reprogram human B cells to produce neutralizing antibodies. The risks of CRISPR-based therapies include off-target and on-target modifications. Strategies to control these risks are being developed and a phase 1 clinical trials of CRISPR-based therapies for cancer and monogenic diseases are already underway. CONCLUSIONS: CRISPR systems have broad applicability in the field of infectious diseases and may offer solutions to many of the most challenging human infections.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Gene Editing , Humans , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity
9.
Lancet Infect Dis ; 22(1): e28-e34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1305331

ABSTRACT

Due to their superior tolerability and efficacy, ß-lactams are the most potent and prescribed class of antibiotics in the clinic. The emergence of resistance to those antibiotics, mainly due to the production of bacterial enzymes called ß-lactamases, has been partially solved by the introduction of ß-lactamase inhibitors, which restore the activity of otherwise obsolete molecules. This solution is limited because currently available ß-lactamase inhibitors only work against serine ß-lactamases, whereas metallo-ß-lactamases continue to spread, evolve, and confer resistance to all ß-lactams, including carbapenems. Furthermore, the increased use of antibiotics to treat secondary bacterial pneumonia in severely sick patients with COVID-19 might exacerbate the problem of antimicrobial resistance. In this Personal View, we summarise the main advances accomplished in this area of research, emphasise the main challenges that need to be solved, and the importance of research on inhibitors for metallo-B-lactamases amidst the current pandemic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial , Global Health , beta-Lactamase Inhibitors/therapeutic use , beta-Lactams/pharmacology , Bacteria/enzymology , Bacteria/pathogenicity , COVID-19/complications , COVID-19/microbiology , Coinfection/drug therapy , Coinfection/microbiology , Humans
10.
Sci Rep ; 10(1): 3963, 2020 03 03.
Article in English | MEDLINE | ID: covidwho-659769

ABSTRACT

The diversity of pathogens associated with acute respiratory infection (ARI) makes diagnosis challenging. Traditional pathogen screening tests have a limited detection range and provide little additional information. We used total RNA sequencing ("meta-transcriptomics") to reveal the full spectrum of microbes associated with paediatric ARI. Throat swabs were collected from 48 paediatric ARI patients and 7 healthy controls. Samples were subjected to meta-transcriptomics to determine the presence and abundance of viral, bacterial, and eukaryotic pathogens, and to reveal mixed infections, pathogen genotypes/subtypes, evolutionary origins, epidemiological history, and antimicrobial resistance. We identified 11 RNA viruses, 4 DNA viruses, 4 species of bacteria, and 1 fungus. While most are known to cause ARIs, others, such as echovirus 6, are rarely associated with respiratory disease. Co-infection of viruses and bacteria and of multiple viruses were commonplace (9/48), with one patient harboring 5 different pathogens, and genome sequence data revealed large intra-species diversity. Expressed resistance against eight classes of antibiotic was detected, with those for MLS, Bla, Tet, Phe at relatively high abundance. In summary, we used a simple total RNA sequencing approach to reveal the complex polymicrobial infectome in ARI. This provided comprehensive and clinically informative information relevant to understanding respiratory disease.


Subject(s)
Metagenome/genetics , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Bacteria/classification , Bacteria/genetics , Bacteria/pathogenicity , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/pathogenicity , Drug Resistance, Microbial/genetics , Female , Fungi/classification , Fungi/genetics , Fungi/pathogenicity , Humans , Male , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/pathogenicity , Viruses/classification , Viruses/genetics , Viruses/pathogenicity
11.
Antimicrob Resist Infect Control ; 10(1): 21, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1054843

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is a growing global problem to which the ongoing COVID-19 pandemic may further contribute. With resources deployed away from antimicrobial stewardship, evidence of substantial pre-emptive antibiotic use in COVID-19 patients and indirectly, with deteriorating economic conditions fuelling poverty potentially impacting on levels of resistance, AMR threat remains significant. MAIN BODY: In this paper, main AMR countermeasures are revisited and priorities to tackle the issue are re-iterated. The need for collaboration is stressed, acknowledging the relationship between human health, animal health and environment ("One Health" approach). Among the stated priorities, the initiative by the European Medicines Regulatory Network to further strengthen the measures in combatting AMR is highlighted. Likewise, it is asserted that other emerging health threats require global collaboration with the One Health approach offering a valuable blueprint for action. CONCLUSION: The authors stress the importance of an integrated preparedness strategy to tackle this public health peril.


Subject(s)
Anti-Bacterial Agents/pharmacology , COVID-19/epidemiology , Drug Resistance, Bacterial/genetics , One Health/legislation & jurisprudence , Pandemics , SARS-CoV-2/pathogenicity , Animal Feed/analysis , Animal Welfare/legislation & jurisprudence , Animals , Antimicrobial Stewardship/legislation & jurisprudence , Bacteria/drug effects , Bacteria/genetics , Bacteria/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Europe/epidemiology , Humans , International Cooperation , Livestock/microbiology
12.
J Acoust Soc Am ; 148(4): 2322, 2020 10.
Article in English | MEDLINE | ID: covidwho-901221

ABSTRACT

Respiratory droplets emitted during speech can transmit oral bacteria and infectious viruses to others, including COVID-19. Loud speech can generate significantly higher numbers of potentially infectious respiratory droplets. This study assessed the effect of speech volume on respiratory emission of oral bacteria as an indicator of potential pathogen transmission risk. Loud speech (average 83 dBA, peak 94 dBA) caused significantly higher emission of oral bacteria (p = 0.004 compared to no speech) within 1 ft from the speaker. N99 respirators and simple cloth masks both significantly reduced emission of oral bacteria. This study demonstrates that loud speech without face coverings increases emission of respiratory droplets that carry oral bacteria and may also carry other pathogens such as COVID-19.


Subject(s)
Air Microbiology , Bacteria/pathogenicity , Bacterial Infections/transmission , Inhalation Exposure , Mouth/microbiology , Respiration , Speech Acoustics , Aerosols , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Humans , Inhalation Exposure/prevention & control , Masks , Personal Protective Equipment , Respiratory Protective Devices
15.
Curr Biol ; 30(19): R1124-R1130, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-813541

ABSTRACT

Since the first recognition that infectious microbes serve as the causes of many human diseases, physicians and scientists have sought to understand and control their spread. For the past 150+ years, these 'microbe hunters' have learned to combine epidemiological information with knowledge of the infectious agent(s). In this essay, I reflect on the evolution of microbe hunting, beginning with the history of pre-germ theory epidemiological studies, through the microbiological and molecular eras. Now in the genomic age, modern-day microbe hunters are combining pathogen whole-genome sequencing with epidemiological data to enhance epidemiological investigations, advance our understanding of the natural history of pathogens and drivers of disease, and ultimately reshape our plans and priorities for global disease control and eradication. Indeed, as we have seen during the ongoing Covid-19 pandemic, the role of microbe hunters is now more important than ever. Despite the advances already made by microbial genomic epidemiology, the field is still maturing, with many more exciting developments on the horizon.


Subject(s)
Bacteria/genetics , Bacterial Infections/diagnosis , Bacterial Infections/epidemiology , Molecular Epidemiology/methods , Primary Prevention/methods , Bacteria/pathogenicity , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Genome, Bacterial/genetics , Genome, Viral/genetics , History, 19th Century , History, 20th Century , Humans , Microbiota/genetics , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
16.
ACS Nano ; 14(10): 13161-13171, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-798108

ABSTRACT

The regeneration of filtering facepiece respirators (FFRs) is of critical importance because of the severe shortage of FFRs during large-scale outbreaks of respiratory epidemics, such as COVID-19. Comprehensive experiments regarding FFR regeneration were performed in this study with model bacteria to illustrate the decontamination performance of the regeneration processes. The results showed that it is dangerous to use a contaminated FFR without any microbe inactivation treatment because the bacteria can live for more than 8 h. The filtration efficiency and surface electrostatic potential of 75% ethanol-treated FFRs were significantly reduced, and a most penetrating particle size of 200 nm was observed. Steam and microwave irradiation (MWI) showed promising decontamination performances, achieving 100% inactivation in 90 and 30 min, respectively. The filtration efficiencies of steam-treated FFRs for 50 and 100 nm particles decreased from 98.86% and 99.51% to 97.58% and 98.79%, respectively. Ultraviolet irradiation (UVI) effectively inactivated the surface bacteria with a short treatment of 5 min and did not affect the filtration performance. However, the UV dose reaching different layers of the FFP2 mask sample gradually decreased from the outermost layer to the innermost layer, while the model bacteria on the second and third layers could not be killed completely. UVI+MWI and steam were recommended to effectively decontaminate the used respirators and still maintain the respirators' filtration efficiency. The present work provides a comprehensive evaluation for FFR regeneration in terms of the filtration efficiencies for 50-500 nm particles, the electrostatic properties, mechanical properties, and decontamination effects.


Subject(s)
Bacteria/radiation effects , Disinfection/methods , Masks/microbiology , Respiratory Protective Devices/microbiology , Bacteria/drug effects , Bacteria/pathogenicity , Disinfection/standards , Ethanol/toxicity , Filtration , Humans , Masks/standards , Microwaves , Respiratory Protective Devices/standards , Steam , Textiles/microbiology , Textiles/standards , Ultraviolet Rays
17.
Biosens Bioelectron ; 166: 112471, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-670678

ABSTRACT

The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.


Subject(s)
Bacteria/isolation & purification , Betacoronavirus/isolation & purification , Biosensing Techniques/methods , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Graphite , Pandemics , Pneumonia, Viral/diagnosis , Viruses/isolation & purification , Animals , Bacteria/genetics , Bacteria/pathogenicity , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Graphite/chemistry , Humans , Molecular Diagnostic Techniques , Nanotechnology , SARS-CoV-2 , Viruses/genetics , Viruses/pathogenicity
18.
Clin Microbiol Infect ; 26(12): 1622-1629, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-664356

ABSTRACT

BACKGROUND: Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity and mortality. The prevalence of bacterial infection in patients infected with SARS-CoV-2 is not well understood. AIMS: To determine the prevalence of bacterial co-infection (at presentation) and secondary infection (after presentation) in patients with COVID-19. SOURCES: We performed a systematic search of MEDLINE, OVID Epub and EMBASE databases for English language literature from 2019 to April 16, 2020. Studies were included if they (a) evaluated patients with confirmed COVID-19 and (b) reported the prevalence of acute bacterial infection. CONTENT: Data were extracted by a single reviewer and cross-checked by a second reviewer. The main outcome was the proportion of COVID-19 patients with an acute bacterial infection. Any bacteria detected from non-respiratory-tract or non-bloodstream sources were excluded. Of 1308 studies screened, 24 were eligible and included in the rapid review representing 3338 patients with COVID-19 evaluated for acute bacterial infection. In the meta-analysis, bacterial co-infection (estimated on presentation) was identified in 3.5% of patients (95%CI 0.4-6.7%) and secondary bacterial infection in 14.3% of patients (95%CI 9.6-18.9%). The overall proportion of COVID-19 patients with bacterial infection was 6.9% (95%CI 4.3-9.5%). Bacterial infection was more common in critically ill patients (8.1%, 95%CI 2.3-13.8%). The majority of patients with COVID-19 received antibiotics (71.9%, 95%CI 56.1 to 87.7%). IMPLICATIONS: Bacterial co-infection is relatively infrequent in hospitalized patients with COVID-19. The majority of these patients may not require empirical antibacterial treatment.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/complications , COVID-19/microbiology , Coinfection/epidemiology , Asia/epidemiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/pathogenicity , Bacterial Infections/microbiology , Coinfection/microbiology , Coinfection/virology , Critical Illness/epidemiology , Data Management , Female , Humans , Male , Pandemics , Prevalence , Respiratory Tract Infections , United States/epidemiology
19.
Am J Infect Control ; 48(11): 1370-1374, 2020 11.
Article in English | MEDLINE | ID: covidwho-620103

ABSTRACT

BACKGROUND: Mobile phones are known to carry pathogenic bacteria and viruses on their surfaces, posing a risk to healthcare providers (HCPs) and hospital infection prevention efforts. We utilize an Ultraviolet-C (UV-C) device to provide an effective method for mobile phone disinfection and survey HCPs about infection risk. METHODS: Environmental swabs were used to culture HCPs' personal mobile phone surfaces. Four cultures were obtained per phone: before and after the UV-C device's 30-second disinfecting cycle, at the beginning and end of a 12-hour shift. Surveys were administered to participants pre- and poststudy. RESULTS: Total bacterial colony forming units were reduced by 90.5% (P = .006) after one UV-C disinfection cycle, and by 99.9% (P = .004) after 2 cycles. Total pathogenic bacterial colony forming units were decreased by 98.2% (P = .038) after one and >99.99% (P = .037) after 2 disinfection cycles. All survey respondents were willing to use the UV-C device daily to weekly, finding it convenient and beneficial. DISCUSSION: This novel UV-C disinfecting device is effective in reducing pathogenic bacteria on mobile phones. HCPs would frequently use a phone disinfecting device to reduce infection risk. CONCLUSIONS: In light of the ongoing coronavirus (COVID-19) pandemic, a standardized approach to phone disinfection may be valuable in preventing healthcare-associated infections.


Subject(s)
Bacteria/radiation effects , Betacoronavirus/radiation effects , Cell Phone , Disinfection/instrumentation , Ultraviolet Rays , Bacteria/pathogenicity , Betacoronavirus/pathogenicity , COVID-19 , Colony Count, Microbial , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Infection/microbiology , Cross Infection/prevention & control , Disease Transmission, Infectious/prevention & control , Disinfection/methods , Hospitals , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL