Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Immunol ; 12: 715023, 2021.
Article in English | MEDLINE | ID: covidwho-1477819

ABSTRACT

Emerging evidence has unveiled the secondary infection as one of the mortal causes of post-SARS-CoV-2 infection, but the factors related to secondary bacterial or fungi infection remains largely unexplored. We here systematically investigated the factors that might contribute to secondary infection. By clinical examination index analysis of patients, combined with the integrative analysis with RNA-seq analysis in the peripheral blood mononuclear cell isolated shortly from initial infection, this study showed that the antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection. Further monitoring analysis of immune cell and liver injury analysis showed that the risk of secondary infection was accompanied by severe lymphocytopenia at the intermediate and late stages and liver injury at the early stages of SARS-CoV-2. Moreover, the metagenomics analysis of bronchoalveolar lavage fluid and the microbial culture analysis, to some extent, showed that the severe pneumonia-related bacteria have already existed in the initial infection.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/mortality , Mycoses/epidemiology , Adult , Aged , Aged, 80 and over , Bacterial Infections/mortality , Bronchoalveolar Lavage Fluid/microbiology , CD4 Lymphocyte Count , Female , Humans , Leukocytes, Mononuclear/immunology , Liver/injuries , Liver/virology , Lymphopenia/immunology , Male , Middle Aged , Mycoses/mortality , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
2.
Jpn J Infect Dis ; 74(4): 307-315, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1323440

ABSTRACT

Steroids are expected to be effective in the treatment of cytokine release syndrome, which is considered to be associated with severe cases of coronavirus disease 2019 (COVID-19). We aimed to investigate the use of steroids and its effects. We conducted a retrospective chart review and an analysis of 226 consecutive hospitalized patients with confirmed COVID-19. Patients were divided into those who received steroids (steroid group) and those who did not (no steroid group). Inverse probability weighted analysis was performed to assess the effect of steroids on in-hospital mortality. The steroid group had higher rates of preexisting hypertension and peripheral vascular disease as well as higher lactate dehydrogenase levels, d-dimer levels, and inflammatory markers than the no steroid group (all P <0.05). The steroid group had significantly higher rates of multifocal pneumonia than the no steroid group at admission (75.4% vs. 50.3%, P = 0.001). Notably, the steroid group had higher rates of developing bacterial infection (25% vs. 13.1%, P = 0.041) and fungal infection (12.7% versus 0.7%, P <0.001) during the hospital course than the no steroid group. After adjustment, it was observed that steroids did not decrease or increase in-hospital mortality (odds ratio [95% confidence interval]: 1.02 [0.60-1.73, P = 0.94]). There was an increase in bacterial and fungal infections with steroid use.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Bacterial Infections/mortality , COVID-19/mortality , Coinfection/mortality , Female , Hospital Mortality , Hospitalization , Humans , Inflammation/mortality , Inflammation/virology , Male , Middle Aged , Mycoses/mortality , New York City/epidemiology , Retrospective Studies , SARS-CoV-2/pathogenicity , Steroids/therapeutic use
3.
Virol J ; 18(1): 127, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269882

ABSTRACT

BACKGROUND: In COVID-19 patients, undetected co-infections may have severe clinical implications associated with increased hospitalization, varied treatment approaches and mortality. Therefore, we investigated the implications of viral and bacterial co-infection in COVID-19 clinical outcomes. METHODS: Nasopharyngeal samples were obtained from 48 COVID-19 patients (29% ICU and 71% non-ICU) and screened for the presence of 24 respiratory pathogens using six multiplex PCR panels. RESULTS: We found evidence of co-infection in 34 COVID-19 patients (71%). Influenza A H1N1 (n = 17), Chlamydia pneumoniae (n = 13) and human adenovirus (n = 10) were the most commonly detected pathogens. Viral co-infection was associated with increased ICU admission (r = 0.1) and higher mortality (OR 1.78, CI = 0.38-8.28) compared to bacterial co-infections (OR 0.44, CI = 0.08-2.45). Two thirds of COVID-19 critically ill patients who died, had a co-infection; and Influenza A H1N1 was the only pathogen for which a direct relationship with mortality was seen (r = 0.2). CONCLUSIONS: Our study highlights the importance of screening for co-infecting viruses in COVID-19 patients, that could be the leading cause of disease severity and death. Given the high prevalence of Influenza co-infection in our study, increased coverage of flu vaccination is encouraged to mitigate the transmission of influenza virus during the on-going COVID-19 pandemic and reduce the risk of severe outcome and mortality.


Subject(s)
COVID-19/mortality , Coinfection/mortality , Influenza, Human/mortality , Adult , Aged , Bacterial Infections/epidemiology , Bacterial Infections/mortality , Bacterial Infections/pathology , COVID-19/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/pathology , Female , Hospitalization , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/pathology , Intensive Care Units , Male , Middle Aged , Nasopharynx/microbiology , Nasopharynx/virology , Prevalence , SARS-CoV-2/isolation & purification , Saudi Arabia/epidemiology
4.
PLoS One ; 16(5): e0251170, 2021.
Article in English | MEDLINE | ID: covidwho-1218426

ABSTRACT

INTRODUCTION: The recovery of other pathogens in patients with SARS-CoV-2 infection has been reported, either at the time of a SARS-CoV-2 infection diagnosis (co-infection) or subsequently (superinfection). However, data on the prevalence, microbiology, and outcomes of co-infection and superinfection are limited. The purpose of this study was to examine the occurrence of co-infections and superinfections and their outcomes among patients with SARS-CoV-2 infection. PATIENTS AND METHODS: We searched literature databases for studies published from October 1, 2019, through February 8, 2021. We included studies that reported clinical features and outcomes of co-infection or superinfection of SARS-CoV-2 and other pathogens in hospitalized and non-hospitalized patients. We followed PRISMA guidelines, and we registered the protocol with PROSPERO as: CRD42020189763. RESULTS: Of 6639 articles screened, 118 were included in the random effects meta-analysis. The pooled prevalence of co-infection was 19% (95% confidence interval [CI]: 14%-25%, I2 = 98%) and that of superinfection was 24% (95% CI: 19%-30%). Pooled prevalence of pathogen type stratified by co- or superinfection were: viral co-infections, 10% (95% CI: 6%-14%); viral superinfections, 4% (95% CI: 0%-10%); bacterial co-infections, 8% (95% CI: 5%-11%); bacterial superinfections, 20% (95% CI: 13%-28%); fungal co-infections, 4% (95% CI: 2%-7%); and fungal superinfections, 8% (95% CI: 4%-13%). Patients with a co-infection or superinfection had higher odds of dying than those who only had SARS-CoV-2 infection (odds ratio = 3.31, 95% CI: 1.82-5.99). Compared to those with co-infections, patients with superinfections had a higher prevalence of mechanical ventilation (45% [95% CI: 33%-58%] vs. 10% [95% CI: 5%-16%]), but patients with co-infections had a greater average length of hospital stay than those with superinfections (mean = 29.0 days, standard deviation [SD] = 6.7 vs. mean = 16 days, SD = 6.2, respectively). CONCLUSIONS: Our study showed that as many as 19% of patients with COVID-19 have co-infections and 24% have superinfections. The presence of either co-infection or superinfection was associated with poor outcomes, including increased mortality. Our findings support the need for diagnostic testing to identify and treat co-occurring respiratory infections among patients with SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Superinfection/epidemiology , Bacterial Infections/epidemiology , Bacterial Infections/mortality , Bacterial Infections/therapy , COVID-19/mortality , COVID-19/therapy , Coinfection/mortality , Coinfection/therapy , Hospitalization , Humans , Mycoses/epidemiology , Mycoses/mortality , Mycoses/therapy , Prevalence , SARS-CoV-2/isolation & purification , Superinfection/mortality , Superinfection/therapy , Treatment Outcome , Virus Diseases/epidemiology , Virus Diseases/mortality , Virus Diseases/therapy
5.
J Med Virol ; 93(3): 1489-1495, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196455

ABSTRACT

Bacterial coinfection is associated with poor outcomes in patients with viral pneumonia, but data on its role in the mortality of patients with coronavirus disease 2019 (COVID-19) is limited. This is a single-center retrospective analysis of 242 patients with confirmed COVID-19 admitted to both intensive care and non-intensive care settings. Bacterial coinfection was determined by the presence of characteristic clinical features and positive culture results. Multivariable logistic regression was used to analyze the association of concomitant bacterial infection with inpatient death after adjusting for demographic factors and comorbidities. Antibiotic use pattern was also determined. Bacterial coinfection was detected in 46 (19%) patients. Genitourinary source was the most frequent, representing 57% of all coinfections. The overall mortality rate was 21%. Concomitant bacterial infections were independently associated with increased inpatient mortality (OR, 5.838; 95% CI, 2.647-12.876). Patients with bacterial coinfection were relatively older (71.35 ± 11.20 vs 64.78 ± 15.23; P = .006). A total of 67% of patients received antibiotic therapy, yet 72% did not have an obvious source of bacterial infection. There was a significantly higher rate of inpatient mortality in patients who received antibiotics compared to those who did not (30% vs 5%; P < .0001). Bacterial coinfection in COVID-19 is associated with increased mortality.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/complications , Bacterial Infections/drug therapy , COVID-19/complications , COVID-19/mortality , Coinfection/mortality , Aged , Bacterial Infections/mortality , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged
6.
J Hosp Infect ; 113: 145-154, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1182572

ABSTRACT

BACKGROUND: SARS-CoV-2 predisposes patients to secondary infections; however, a better understanding of the impact of coinfections on the outcome of hospitalized COVID-19 patients is still necessary. AIM: To analyse death risk due to coinfections in COVID-19 patients. METHODS: The odds of death of 212 severely ill COVID-19 patients were evaluated, with detailed focus on the risks for each pathogen, site of infection, comorbidities and length of hospitalization. FINDINGS: The mortality rate was 50.47%. Fungal and/or bacterial isolation occurred in 89 patients, of whom 83.14% died. Coinfected patients stayed hospitalized longer and had an increased odds of dying (odds ratio (OR): 13.45; R2 = 0.31). The risk of death was increased by bacterial (OR: 11.28) and fungal (OR: 5.97) coinfections, with increased levels of creatinine, leucocytes, urea and C-reactive protein. Coinfections increased the risk of death if patients suffered from cardiovascular disease (OR: 11.53), diabetes (OR: 6.00) or obesity (OR: 5.60) in comparison with patients with these comorbidities but without pathogen isolation. The increased risk of death was detected for coagulase-negative Staphylococcus (OR: 25.39), Candida non-albicans (OR: 11.12), S. aureus (OR: 10.72), Acinetobacter spp. (OR: 6.88), Pseudomonas spp. (OR: 4.77), and C. albicans (OR: 3.97). The high-risk sites of infection were blood, tracheal aspirate, and urine. Patients with coinfection undergoing invasive mechanical ventilation were 3.8 times more likely to die than those without positive cultures. CONCLUSION: Severe COVID-19 patients with secondary coinfections required longer hospitalization and had higher risk of death. The early diagnosis of coinfections is essential to identify high-risk patients and to determine the right interventions to reduce mortality.


Subject(s)
Bacterial Infections/mortality , COVID-19/mortality , Coinfection/mortality , Mycoses/mortality , Adult , Aged , Bacterial Infections/complications , COVID-19/complications , Female , Humans , Length of Stay , Male , Middle Aged , Mycoses/complications , Respiration, Artificial
7.
PLoS One ; 16(4): e0249349, 2021.
Article in English | MEDLINE | ID: covidwho-1172877

ABSTRACT

BACKGROUND: Tocilizumab, an interleukin-6 receptor blocker, has been used in the inflammatory phase of COVID-19, but its impact independent of corticosteroids remains unclear in patients with severe disease. METHODS: In this retrospective analysis of patients with COVID-19 admitted between March 2 and April 14, 2020 to a large academic medical center in New York City, we describe outcomes associated with tocilizumab 400 mg (without methylprednisolone) compared to a propensity-matched control. The primary endpoints were change in a 7-point ordinal scale of oxygenation and ventilator free survival, both at days 14 and 28. Secondary endpoints include incidence of bacterial superinfections and gastrointestinal perforation. Primary outcomes were evaluated using t-test. RESULTS: We identified 33 patients who received tocilizumab and matched 74 controls based on demographics and health measures upon admission. After adjusting for illness severity and baseline ordinal scale, we failed to find evidence of an improvement in hypoxemia based on an ordinal scale at hospital day 14 in the tocilizumab group (OR 2.2; 95% CI, 0.7-6.5; p = 0.157) or day 28 (OR 1.1; 95% CI, 0.4-3.6; p = 0.82). There also was no evidence of an improvement in ventilator-free survival at day 14 (OR 0.8; 95% CI, 0.18-3.5; p = 0.75) or day 28 (OR 1.1; 95% CI, 0.1-1.8; p = 0.23). There was no increase in secondary bacterial infection rates in the tocilizumab group compared to controls (OR 0.37; 95% CI, 0.09-1.53; p = 0.168). CONCLUSIONS: There was no evidence to support an improvement in hypoxemia or ventilator-free survival with use of tocilizumab 400 mg in the absence of corticosteroids. No increase in secondary bacterial infections was observed in the group receiving tocilizumab.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Bacterial Infections , COVID-19 , Disease Outbreaks , Hospitals, Teaching , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/adverse effects , Bacterial Infections/etiology , Bacterial Infections/mortality , COVID-19/drug therapy , COVID-19/mortality , Disease-Free Survival , Female , Humans , Male , Middle Aged , New York City/epidemiology , Respiration, Artificial , Retrospective Studies , Survival Rate
8.
Int Immunopharmacol ; 90: 107157, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065211

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has brought challenges to health and social care systems. However, the empirical use of antibiotics is still confusing. Presently, a total of 1123 patients with COVID-19 admitted to Renmin Hospital of Wuhan University was included in this retrospective cohort study. The clinical features, complications and outcomes were compared between the suspected bacterial infection and the no evidence of bacterial infection. The risk factors of mortality and the incidence of acute organ injury were analyzed. As a result, 473 patients were selected to suspected bacterial infection (SI) group based on higher white blood cell count and procalcitonin or bacterial pneumonia on chest radiography. 650 patients were selected to the no evidence of bacterial infection (NI) group. The SI group had more severely ill patients (70.2% vs. 39.8%), more death (20.5% vs. 2.2%), and more acute organ injury (40.2% vs. 11.2%). Antibiotics were found associated with improved mortality and an increased risk for acute organ injury in hospitalized patients with COVID-19. Intravenous moxifloxacin and meropenem increased the death rate in patients with suspected bacterial infection, while oral antibiotics reduced mortality in this group. Moreover, penicillin and meropenem treatments were associated with increased mortality of the patients with no evidence of bacterial infection. In conclusion, patients with suspected bacterial infection were more likely to have negative clinical outcomes than those without bacterial infection. Empirical use of antibiotics may not have the expected benefits.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , COVID-19/drug therapy , Leukocytes/pathology , Lung/diagnostic imaging , SARS-CoV-2/physiology , Aged , Bacterial Infections/complications , Bacterial Infections/mortality , COVID-19/complications , COVID-19/mortality , China , Cohort Studies , Female , Humans , Lung/pathology , Male , Middle Aged , Pneumonia, Bacterial , Procalcitonin/metabolism , Retrospective Studies , Risk Factors , Survival Analysis
10.
Clin Chem Lab Med ; 59(2): 433-440, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-962382

ABSTRACT

Objectives: Procalcitonin (PCT) has been proposed for differentiating viral vs. bacterial infections. In COVID-19, some preliminary results have shown that PCT testing could act as a predictor of bacterial co-infection and be a useful marker for assessment of disease severity. Methods: We studied 83 COVID-19 hospitalized patients in whom PCT was specifically ordered by attending physicians. PCT results were evaluated according to the ability to accurately predict bacterial co-infections and death in comparison with other known biomarkers of infection and with major laboratory predictors of COVID-19 severity. Results: Thirty-three (39.8%) patients suffered an in-hospital bacterial co-infection and 44 (53.0%) patients died. In predicting bacterial co-infection, PCT showed a relatively low accuracy (area under receiver-operating characteristic [ROC] curve [AUC]: 0.757; 95% confidence interval [CI]: 0.651-0.845), with a strength for detecting the outcome not significantly different from that of white blood cell count and C-reactive protein (CRP). In predicting patient death, PCT showed an AUC of 0.815 (CI: 0.714-0.892), not better than those of other more common laboratory tests, such as blood lymphocyte percentage (AUC: 0.874, p=0.19), serum lactate dehydrogenase (AUC: 0.860, p=0.47), blood neutrophil count (AUC: 0.845, p=0.59), and serum albumin (AUC: 0.839, p=0.73). Conclusions: Procalcitonin (PCT) testing, even when appropriately ordered, did not provide a significant added value in COVID-19 patients when compared with more consolidated biomarkers of infection and poor clinical outcome. The major application of PCT in COVID-19 is its ability, associated with a negative predictive value >90%, to exclude a bacterial co-infection when a rule-out cut-off (<0.25 µg/L) is applied.


Subject(s)
COVID-19/diagnosis , Coinfection/diagnosis , Procalcitonin/blood , Aged , Bacterial Infections/blood , Bacterial Infections/diagnosis , Bacterial Infections/mortality , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Coinfection/blood , Coinfection/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Multivariate Analysis , ROC Curve , Regression Analysis , Retrospective Studies , SARS-CoV-2
11.
Clin Microbiol Infect ; 27(1): 83-88, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-764421

ABSTRACT

OBJECTIVES: To describe the burden, epidemiology and outcomes of co-infections and superinfections occurring in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: We performed an observational cohort study of all consecutive patients admitted for ≥48 hours to the Hospital Clinic of Barcelona for COVID-19 (28 February to 22 April 2020) who were discharged or dead. We describe demographic, epidemiologic, laboratory and microbiologic results, as well as outcome data retrieved from electronic health records. RESULTS: Of a total of 989 consecutive patients with COVID-19, 72 (7.2%) had 88 other microbiologically confirmed infections: 74 were bacterial, seven fungal and seven viral. Community-acquired co-infection at COVID-19 diagnosis was uncommon (31/989, 3.1%) and mainly caused by Streptococcus pneumoniae and Staphylococcus aureus. A total of 51 hospital-acquired bacterial superinfections, mostly caused by Pseudomonas aeruginosa and Escherichia coli, were diagnosed in 43 patients (4.7%), with a mean (SD) time from hospital admission to superinfection diagnosis of 10.6 (6.6) days. Overall mortality was 9.8% (97/989). Patients with community-acquired co-infections and hospital-acquired superinfections had worse outcomes. CONCLUSIONS: Co-infection at COVID-19 diagnosis is uncommon. Few patients developed superinfections during hospitalization. These findings are different compared to those of other viral pandemics. As it relates to hospitalized patients with COVID-19, such findings could prove essential in defining the role of empiric antimicrobial therapy or stewardship strategies.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/epidemiology , Cross Infection/epidemiology , Mycoses/epidemiology , SARS-CoV-2/pathogenicity , Superinfection/epidemiology , Virus Diseases/epidemiology , Aged , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/microbiology , Bacterial Infections/mortality , Bacterial Infections/therapy , Bacterial Typing Techniques , Blood Culture/methods , COVID-19/mortality , COVID-19/therapy , COVID-19/virology , Coinfection , Community-Acquired Infections , Cross Infection/microbiology , Cross Infection/mortality , Cross Infection/therapy , Female , Hospitalization , Hospitals , Humans , Incidence , Male , Middle Aged , Mycoses/microbiology , Mycoses/mortality , Mycoses/therapy , Retrospective Studies , Spain/epidemiology , Sputum/microbiology , Superinfection/mortality , Superinfection/therapy , Superinfection/virology , Survival Analysis , Virus Diseases/mortality , Virus Diseases/therapy , Virus Diseases/virology
12.
Emerg Microbes Infect ; 9(1): 1958-1964, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-725886

ABSTRACT

Objectives Severe or critical COVID-19 is associated with intensive care unit admission, increased secondary infection rate, and would lead to significant worsened prognosis. Risks and characteristics relating to secondary infections in severe COVID-19 have not been described. Methods Severe and critical COVID-19 patients from Shanghai were included. We collected lower respiratory, urine, catheters, and blood samples according to clinical necessity and culture and mNGS were performed. Clinical and laboratory data were archived. Results We found 57.89% (22/38) patients developed secondary infections. The patient receiving invasive mechanical ventilation or in critical state has a higher chance of secondary infections (P<0.0001). The most common infections were respiratory, blood-stream and urinary infections, and in respiratory infections, the most detected pathogens were gram-negative bacteria (26, 50.00%), following by gram-positive bacteria (14, 26.92%), virus (6, 11.54%), fungi (4, 7.69%), and others (2, 3.85%). Respiratory Infection rate post high flow, tracheal intubation, and tracheotomy were 12.90% (4/31), 30.43% (7/23), and 92.31% (12/13) respectively. Secondary infections would lead to lower discharge rate and higher mortality rate. Conclusion Our study originally illustrated secondary infection proportion in severe and critical COVID-19 patients. Culture accompanied with metagenomics sequencing increased pathogen diagnostic rate. Secondary infections risks increased after receiving invasive respiratory ventilations and intravascular devices, and would lead to a lower discharge rate and a higher mortality rate.


Subject(s)
Bacteremia/pathology , Bacterial Infections/pathology , Coronavirus Infections/pathology , Fungemia/pathology , Mycoses/pathology , Opportunistic Infections/pathology , Pneumonia, Viral/pathology , Respiratory Tract Infections/pathology , Urinary Tract Infections/pathology , Aged , Bacteremia/microbiology , Bacteremia/mortality , Bacteremia/virology , Bacterial Infections/microbiology , Bacterial Infections/mortality , Bacterial Infections/virology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/microbiology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Critical Illness , Female , Fungemia/microbiology , Fungemia/mortality , Fungemia/virology , Fungi/pathogenicity , Gram-Negative Bacteria/pathogenicity , Gram-Positive Bacteria/pathogenicity , Humans , Intensive Care Units , Lung/microbiology , Lung/pathology , Lung/virology , Male , Middle Aged , Mycoses/microbiology , Mycoses/mortality , Mycoses/virology , Opportunistic Infections/microbiology , Opportunistic Infections/mortality , Opportunistic Infections/virology , Pandemics , Pneumonia, Viral/microbiology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiration, Artificial/adverse effects , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , Retrospective Studies , Risk , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , Urinary Tract Infections/microbiology , Urinary Tract Infections/mortality , Urinary Tract Infections/virology
13.
Int J Antimicrob Agents ; 56(3): 106103, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-664350

ABSTRACT

This systemic review and meta-analysis aimed to assess the efficacy of tocilizumab for the treatment of severe coronavirus disease 2019 (COVID-19). Candidate studies up to 24 May 2020 were identified from PubMed, Cochrane Library, Embase, medRxiv and bioRxiv. Treatment outcomes included mortality, risk of intensive care unit (ICU) admission and the requirement for mechanical ventilation (MV). Seven retrospective studies involving 592 adult patients with severe COVID-19, including 240 in the tocilizumab group and 352 in the control group, were enrolled. All-cause mortality of severe COVID-19 patients among the tocilizumab group was 16.3% (39/240), which was lower than that in the control group (24.1%; 85/352). However, the difference did not reach statistical significance [risk ratio (RR) = 0.62, 95% confidence interval (CI) 0.31-1.22; I2 = 68%]. Additionally, risk of ICU admission was similar between the tocilizumab and control groups (35.1% vs. 15.8%; RR = 1.51, 95% CI 0.33-6.78; I2 = 86%). The requirement for MV was similar between the tocilizumab and control groups (32.4% vs. 28.6%; RR = 0.82, 95% CI 0.14-4.94; I2 = 91%). However, these non-significant differences between the tocilizumab and control groups may have been the result of baseline characteristics of the tocilizumab group, which were more severe than those of the control group. Based on low-quality evidence, there is no conclusive evidence that tocilizumab would provide any additional benefit to patients with severe COVID-19. Therefore, further recommendation of tocilizumab for COVID-19 cases should be halted until high-quality evidence from randomised controlled trials is available.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/administration & dosage , Coronavirus Infections/therapy , Immunologic Factors/administration & dosage , Pneumonia, Viral/therapy , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antiviral Agents/adverse effects , Bacterial Infections/diagnosis , Bacterial Infections/etiology , Bacterial Infections/immunology , Bacterial Infections/mortality , Betacoronavirus/drug effects , Betacoronavirus/growth & development , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Drug Administration Schedule , Humans , Immunologic Factors/adverse effects , Intensive Care Units , Opportunistic Infections/diagnosis , Opportunistic Infections/etiology , Opportunistic Infections/immunology , Opportunistic Infections/mortality , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...