Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cardiothorac Vasc Anesth ; 36(8 Pt B): 2975-2982, 2022 08.
Article in English | MEDLINE | ID: covidwho-1830213

ABSTRACT

OBJECTIVES: To assess the efficacy of an awake venovenous extracorporeal membrane oxygenation (VV-ECMO) management strategy in preventing clinically relevant barotrauma in patients with coronavirus disease 2019 (COVID-19) with severe acute respiratory distress syndrome (ARDS) at high risk for pneumothorax (PNX)/pneumomediastinum (PMD), defined as the detection of the Macklin-like effect on chest computed tomography (CT) scan. DESIGN: A case series. SETTING: At the intensive care unit of a tertiary-care institution. PARTICIPANTS: Seven patients with COVID-19-associated severe ARDS and Macklin-like radiologic sign on baseline chest CT. INTERVENTIONS: Primary VV-ECMO under spontaneous breathing instead of invasive mechanical ventilation (IMV). All patients received noninvasive ventilation or oxygen through a high-flow nasal cannula before and during ECMO support. The study authors collected data on cannulation strategy, clinical management, and outcome. Failure of awake VV-ECMO strategy was defined as the need for IMV due to worsening respiratory failure or delirium/agitation. The primary outcome was the development of PNX/PMD. MEASUREMENTS AND MAIN RESULTS: No patient developed PNX/PMD. The awake VV-ECMO strategy failed in 1 patient (14.3%). Severe complications were observed in 4 (57.1%) patients and were noted as the following: intracranial bleeding in 1 patient (14.3%), septic shock in 2 patients (28.6%), and secondary pulmonary infections in 3 patients (42.8%). Two patients died (28.6%), whereas 5 were successfully weaned off VV-ECMO and were discharged home. CONCLUSIONS: VV-ECMO in awake and spontaneously breathing patients with severe COVID-19 ARDS may be a feasible and safe strategy to prevent the development of PNX/PMD in patients at high risk for this complication.


Subject(s)
Barotrauma , COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Barotrauma/epidemiology , Barotrauma/etiology , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Humans , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Wakefulness
2.
Minerva Anestesiol ; 88(9): 706-718, 2022 09.
Article in English | MEDLINE | ID: covidwho-1789845

ABSTRACT

INTRODUCTION: Barotrauma is rare in patients with acute respiratory distress syndrome undergoing mechanical ventilation. Its incidence seems increased among critically ill COVID-19 patients. We performed a systematic review and meta-analysis to investigate the incidence, risk factors and clinical outcomes of barotrauma among critically ill COVID-19 patients. EVIDENCE ACQUISITION: PubMed was searched from March 1st, 2020 to August 31st, 2021; case series and retrospective cohort studies concerning barotrauma in adult critically ill COVID-19 patients, either hospitalized in the Intensive Care Unit (ICU) or invasively ventilated were included. Primary outcome was the incidence of barotrauma in COVID-19 versus non-COVID-19 patients. Secondary outcomes were clinical characteristics, ventilator parameters, mortality and length of stay between patients with and without barotrauma. EVIDENCE SYNTHESIS: We identified 21 studies (six case series, 15 retrospective cohorts). The overall incidence of barotrauma was 11 [95% CI: 8-14]% in critically ill COVID-19 patients, vs. 2 [1-3]% in non-COVID-19, P<0.001; the incidence in mechanically ventilated patients was 14 [11-17]% vs. 4 [2-5]% non-COVID-19 patients, P<0.001. There were no differences in demographic, clinical, ventilatory parameters between patients who did and did not develop barotrauma, while, on average, protective ventilation criteria were always respected. Among COVID-19 patients, those with barotrauma had a higher mortality (60 [55-66] vs. 48 [42-54]%, P<0.001) and a longer ICU length of stay (20 [14-26] vs. 13 [10,5-16] days, P=0.03). CONCLUSIONS: Barotrauma is a frequent complication in critically ill COVID-19 patients and is associated with a poor prognosis. Since lung protective ventilation was delivered, the ventilatory management might not be the sole factor in the development of barotrauma.


Subject(s)
Barotrauma , COVID-19 , Adult , Barotrauma/epidemiology , Barotrauma/etiology , Barotrauma/therapy , COVID-19/complications , COVID-19/therapy , Critical Illness/therapy , Humans , Incidence , Intensive Care Units , Respiration, Artificial/adverse effects , Retrospective Studies
3.
Minerva Anestesiol ; 87(2): 193-198, 2021 02.
Article in English | MEDLINE | ID: covidwho-979254

ABSTRACT

BACKGROUND: The aim was to describe the incidence and risk factors of barotrauma in patients with the Coronavirus disease 2019 (COVID-19) on invasive mechanical ventilation, during the outbreak in our region (Lombardy, Italy). METHODS: The study was an electronic survey open from March 27th to May 2nd, 2020. Patients with COVID-19 who developed barotrauma while on invasive mechanical ventilation from 61 hospitals of the COVID-19 Lombardy Intensive Care Unit network were involved. RESULTS: The response rate was 38/61 (62%). The incidence of barotrauma was 145/2041 (7.1%; 95%-CI: 6.1-8.3%). Only a few cases occurred with ventilatory settings that may be considered non-protective such as a plateau airway pressure >35 cmH2O (2/113 [2%]), a driving airway pressure >15 cmH2O (30/113 [27%]), or a tidal volume >8 mL/kg of ideal body weight and a plateau airway pressure >30 cmH2O (12/134 [9%]). CONCLUSIONS: Within the limits of a survey, patients with COVID-19 might be at high risk for barotrauma during invasive (and allegedly lung-protective) mechanical ventilation.


Subject(s)
Barotrauma/epidemiology , COVID-19/complications , Respiration, Artificial/adverse effects , Adult , Air Pressure , Barotrauma/diagnostic imaging , Barotrauma/etiology , COVID-19/epidemiology , COVID-19/therapy , Critical Care , Female , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Risk Factors , Tidal Volume , Tomography, X-Ray Computed
4.
J Intensive Care Med ; 36(4): 477-483, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-788460

ABSTRACT

BACKGROUND: SARS-CoV2 can cause pulmonary failure requiring prolonged invasive mechanical ventilation (MV). Lung protective ventilation strategies are recommended in order to minimize ventilator induced lung injury. Whether patients with COVID-19 have the same risk for complications including barotrauma is still unknown. Therefore, we investigated barotrauma in patients with COVID-19 pneumonia requiring prolonged MV. METHODS: All patients meeting diagnosis criteria for ARDS according to the Berlin Definition, with PCR positive SARS-CoV2 infection and prolonged mechanical ventilation, defined as ≥2 days, treated at our ARDS referral center between March and April 2020 were included in a retrospective registry analysis. Complications were detected by manual review of all patient data including respiratory data, imaging studies, and patient files. RESULTS: A total of 20 patients with severe COVID-19 pulmonary failure (Overall characteristics: median age: 61 years, female gender 6, median duration of MV 22 days) were analyzed. Eight patients (40%) developed severe barotrauma during MV (after median 18 days, range: 1-32) including pneumothorax (5/20), pneumomediastinum (5/20), pneumopericard (1/20), and extended subcutaneous emphysema (5/20). Median respirator settings 24 hours before barotrauma were: Peak inspiratory pressure (Ppeak) 29 cm H2O (range: 27-35), positive end-expiratory pressure (PEEP) 14 cm H2O (range: 5-24), tidal volume (VT) 5.4ml/kg predicted body weight (range 0.4-8.6), plateau pressure (Pplateau) 27 cm H2O (range: 19-30). Mechanical ventilation was significantly more invasive on several occasions in patients without barotrauma. CONCLUSION: Barotrauma in COVID-19 induced respiratory failure requiring mechanical ventilation was found in 40% of patients included in this registry. Our data suggest that barotrauma in COVID-19 may occur even when following recommendations for lung protective MV.


Subject(s)
Barotrauma/epidemiology , COVID-19/therapy , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Ventilators, Mechanical/adverse effects , Adult , Aged , Barotrauma/etiology , Case-Control Studies , Critical Care Outcomes , Female , Humans , Incidence , Male , Middle Aged , Registries , Retrospective Studies , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL