Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.062
Filter
Add filters

Document Type
Year range
1.
J Transl Med ; 18(1): 405, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-1477432

ABSTRACT

BACKGROUND: Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients. METHODS: A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival. RESULTS: In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6-24.0, P = 0.52) and 22.4% (97.5% CI: 17.2-28.3, P < 0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline. CONCLUSIONS: Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline. Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , Cohort Studies , Coronavirus Infections/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Mortality , Off-Label Use , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Treatment Outcome , Validation Studies as Topic
3.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
4.
Am J Emerg Med ; 38(7): 1488-1493, 2020 07.
Article in English | MEDLINE | ID: covidwho-1450042

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has been particularly challenging due to a lack of established therapies and treatment guidelines. With the rapid transmission of disease, even the off-label use of available therapies has been impeded by limited availability. Several antivirals, antimalarials, and biologics are being considered for treatment at this time. The purpose of this literature review is to synthesize the available information regarding treatment options for COVID-19 and serve as a resource for health care professionals. OBJECTIVES: This narrative review was conducted to summarize the effectiveness of current therapy options for COVID-19 and address the controversial use of non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme (ACE) inhibitors, and angiotensin receptor blockers (ARBs). PubMed and SCOPUS were queried using a combination of the keywords "COVID 19," "SARS-CoV-2," and "treatment." All types of studies were evaluated including systematic reviews, case-studies, and clinical guidelines. DISCUSSION: There are currently no therapeutic drugs available that are directly active against SARS-CoV-2; however, several antivirals (remdesivir, favipiravir) and antimalarials (chloroquine, hydroxychloroquine) have emerged as potential therapies. Current guidelines recommend combination treatment with hydroxychloroquine/azithromycin or chloroquine, if hydroxychloroquine is unavailable, in patients with moderate disease, although these recommendations are based on limited evidence. Remdesivir and convalescent plasma may be considered in critical patients with respiratory failure; however, access to these therapies may be limited. Interleukin-6 (IL-6) antagonists may be used in patients who develop evidence of cytokine release syndrome (CRS). Corticosteroids should be avoided unless there is evidence of refractory septic shock, acute respiratory distress syndrome (ARDS), or another compelling indication for their use. ACE inhibitors and ARBs should not be discontinued at this time and ibuprofen may be used for fever. CONCLUSION: There are several ongoing clinical trials that are testing the efficacy of single and combination treatments with the drugs mentioned in this review and new agents are under development. Until the results of these trials become available, we must use the best available evidence for the prevention and treatment of COVID-19. Additionally, we can learn from the experiences of healthcare providers around the world to combat this pandemic.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Drug Therapy, Combination , Emergency Service, Hospital , Humans , Hydroxychloroquine/therapeutic use , Interleukin-6/antagonists & inhibitors , Pandemics , Pyrazines/therapeutic use , Randomized Controlled Trials as Topic , SARS-CoV-2
6.
Virol J ; 17(1): 136, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-1435256

ABSTRACT

BACKGROUND: Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle East Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV-1, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections. Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro. METHODS: To evaluate the antiviral potential of the extract, we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium. RESULTS: In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2 µg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 µg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50µg/ml Echinaforce®. CONCLUSIONS: These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Coronavirus/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Common Cold/drug therapy , Common Cold/virology , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , RNA Viruses/drug effects , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology , Vero Cells
8.
Clin Pharmacol Ther ; 108(4): 775-790, 2020 10.
Article in English | MEDLINE | ID: covidwho-1384148

ABSTRACT

There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). However, this has not been accompanied by a comprehensive evaluation of the target plasma and lung concentrations of these drugs following approved dosing in humans. Accordingly, concentration 90% (EC90 ) values recalculated from in vitro anti-SARS-CoV-2 activity data was expressed as a ratio to the achievable maximum plasma concentration (Cmax ) at an approved dose in humans (Cmax /EC90 ratio). Only 14 of the 56 analyzed drugs achieved a Cmax /EC90 ratio above 1. A more in-depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir-boosted), and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (Kp Ulung ) was also simulated to derive a lung Cmax /half-maximal effective concentration (EC50 ) as a better indicator of potential human efficacy. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir-boosted), tipranavir (ritonavir-boosted), ivermectin, azithromycin, and lopinavir (ritonavir-boosted) were all predicted to achieve lung concentrations over 10-fold higher than their reported EC50 . Nitazoxanide and sulfadoxine also exceeded their reported EC50 by 7.8-fold and 1.5-fold in lung, respectively. This analysis may be used to select potential candidates for further clinical testing, while deprioritizing compounds unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments, such as the lungs, in order to maximize the potential for success of proposed human clinical trials.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Delivery Systems/methods , Drug Repositioning/methods , Pneumonia, Viral/drug therapy , Antiviral Agents/blood , COVID-19 , Coronavirus Infections/blood , Humans , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2
12.
Sci Adv ; 6(28): eabb8097, 2020 07.
Article in English | MEDLINE | ID: covidwho-1388430

ABSTRACT

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Cysteine Endopeptidases/chemistry , Drug Design , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Angiotensin-Converting Enzyme 2 , Benzamides , Benzazepines , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cysteine Endopeptidases/immunology , Cysteine Endopeptidases/metabolism , Drug Evaluation, Preclinical , Epitopes, B-Lymphocyte/drug effects , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/drug effects , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
15.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Article in English | MEDLINE | ID: covidwho-1387198

Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cardiac Glycosides/pharmacology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Animals , Antiviral Agents/chemistry , Betacoronavirus/pathogenicity , Biological Products/chemistry , Biological Products/pharmacology , Bufanolides/chemistry , Bufanolides/pharmacology , COVID-19 , Cardiac Glycosides/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Digoxin/chemistry , Digoxin/pharmacology , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pandemics , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Vero Cells , Virus Replication/drug effects
16.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387194
19.
ACS Nano ; 14(8): 9364-9388, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-1387150

ABSTRACT

The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/therapy , Nanostructures/therapeutic use , Pandemics , Pneumonia, Viral/therapy , Adaptive Immunity , Betacoronavirus/drug effects , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Delivery Systems , Fullerenes/therapeutic use , Host Microbial Interactions/drug effects , Humans , Immunity, Innate , Metal Nanoparticles/therapeutic use , Models, Biological , Nanotechnology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Reactive Oxygen Species/therapeutic use , SARS-CoV-2 , Virus Internalization/drug effects
20.
ACS Chem Biol ; 15(9): 2331-2337, 2020 09 18.
Article in English | MEDLINE | ID: covidwho-1387140

ABSTRACT

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.


Subject(s)
Adamantane/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Ion Channels/antagonists & inhibitors , Molecular Probes/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/metabolism , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Cells, Cultured , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Genetic Variation , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza, Human/drug therapy , Kinetics , Molecular Probes/metabolism , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Protein Binding , SARS-CoV-2 , Structure-Activity Relationship , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...