Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.354
Filter
3.
Infect Control Hosp Epidemiol ; 41(11): 1328-1330, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-2096354

ABSTRACT

Environmental surface testing was performed to search for evidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) environmental contamination by an asymptomatic SARS-CoV-2 carrier with persistently high viral loads under isolation. No evidence of environmental contamination was found. Further studies are needed to measure environmental contamination by SARS-CoV-2 carriers and to determine reasonable isolation periods.


Subject(s)
Asymptomatic Infections , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Fomites/virology , Pneumonia, Viral/diagnosis , Quarantine/methods , Viral Load , Adult , COVID-19 , COVID-19 Testing , Child , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Pandemics/prevention & control , Patients' Rooms , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Quarantine/standards , SARS-CoV-2
4.
Infect Control Hosp Epidemiol ; 41(11): 1258-1265, 2020 11.
Article in English | MEDLINE | ID: covidwho-2096345

ABSTRACT

BACKGROUND: The role of severe respiratory coronavirus virus 2 (SARS-CoV-2)-laden aerosols in the transmission of coronavirus disease 2019 (COVID-19) remains uncertain. Discordant findings of SARS-CoV-2 RNA in air samples were noted in early reports. METHODS: Sampling of air close to 6 asymptomatic and symptomatic COVID-19 patients with and without surgical masks was performed with sampling devices using sterile gelatin filters. Frequently touched environmental surfaces near 21 patients were swabbed before daily environmental disinfection. The correlation between the viral loads of patients' clinical samples and environmental samples was analyzed. RESULTS: All air samples were negative for SARS-CoV-2 RNA in the 6 patients singly isolated inside airborne infection isolation rooms (AIIRs) with 12 air changes per hour. Of 377 environmental samples near 21 patients, 19 (5.0%) were positive by reverse-transcription polymerase chain reaction (RT-PCR) assay, with a median viral load of 9.2 × 102 copies/mL (range, 1.1 × 102 to 9.4 × 104 copies/mL). The contamination rate was highest on patients' mobile phones (6 of 77, 7.8%), followed by bed rails (4 of 74, 5.4%) and toilet door handles (4 of 76, 5.3%). We detected a significant correlation between viral load ranges in clinical samples and positivity rate of environmental samples (P < .001). CONCLUSION: SARS-CoV-2 RNA was not detectable by air samplers, which suggests that the airborne route is not the predominant mode of transmission of SARS-CoV-2. Wearing a surgical mask, appropriate hand hygiene, and thorough environmental disinfection are sufficient infection control measures for COVID-19 patients isolated singly in AIIRs. However, this conclusion may not apply during aerosol-generating procedures or in cohort wards with large numbers of COVID-19 patients.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Fomites/virology , Infection Control/methods , Patients' Rooms , Pneumonia, Viral/transmission , Adolescent , Adult , Aerosols , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Load
6.
Infect Control Hosp Epidemiol ; 41(8): 968-969, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-2096333

ABSTRACT

To inform the efficient allocation of testing resources, we evaluated the characteristics of those tested for COVID-19 to determine predictors of a positive test. Recent travel and exposure to a confirmed case were both highly predictive of positive testing. Symptom-based screening strategies alone may be inadequate to control the ongoing pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Polymerase Chain Reaction , Travel , Adult , Asymptomatic Infections , COVID-19 , COVID-19 Testing , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Female , Humans , Logistic Models , Male , Middle Aged , Minnesota , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Risk Assessment , SARS-CoV-2
11.
Nature ; 586(7831): 776-778, 2020 10.
Article in English | MEDLINE | ID: covidwho-2077076

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan in December 2019 and caused coronavirus disease 2019 (COVID-19)1,2. In 2003, the closely related SARS-CoV had been detected in domestic cats and a dog3. However, little is known about the susceptibility of domestic pet mammals to SARS-CoV-2. Here, using PCR with reverse transcription, serology, sequencing the viral genome and virus isolation, we show that 2 out of 15 dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected with SARS-CoV-2. SARS-CoV-2 RNA was detected in five nasal swabs collected over a 13-day period from a 17-year-old neutered male Pomeranian. A 2.5-year-old male German shepherd was positive for SARS-CoV-2 RNA on two occasions and virus was isolated from nasal and oral swabs. Antibody responses were detected in both dogs using plaque-reduction-neutralization assays. Viral genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases. The dogs remained asymptomatic during quarantine. The evidence suggests that these are instances of human-to-animal transmission of SARS-CoV-2. It is unclear whether infected dogs can transmit the virus to other animals or back to humans.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Dog Diseases/transmission , Dog Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dogs , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , SARS-CoV-2 , Time Factors
15.
MMWR Morb Mortal Wkly Rep ; 69(46): 1725-1729, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-1876240

ABSTRACT

New York City (NYC) was an epicenter of the coronavirus disease 2019 (COVID-19) outbreak in the United States during spring 2020 (1). During March-May 2020, approximately 203,000 laboratory-confirmed COVID-19 cases were reported to the NYC Department of Health and Mental Hygiene (DOHMH). To obtain more complete data, DOHMH used supplementary information sources and relied on direct data importation and matching of patient identifiers for data on hospitalization status, the occurrence of death, race/ethnicity, and presence of underlying medical conditions. The highest rates of cases, hospitalizations, and deaths were concentrated in communities of color, high-poverty areas, and among persons aged ≥75 years or with underlying conditions. The crude fatality rate was 9.2% overall and 32.1% among hospitalized patients. Using these data to prevent additional infections among NYC residents during subsequent waves of the pandemic, particularly among those at highest risk for hospitalization and death, is critical. Mitigating COVID-19 transmission among vulnerable groups at high risk for hospitalization and death is an urgent priority. Similar to NYC, other jurisdictions might find the use of supplementary information sources valuable in their efforts to prevent COVID-19 infections.


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Young Adult
17.
Can J Anaesth ; 67(10): 1424-1430, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1777852

ABSTRACT

PURPOSE: Risk to healthcare workers treating asymptomatic patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the operating room depends on multiple factors. This review examines the evidence for asymptomatic or pre-symptomatic carriage of SARS-CoV-2, the risk of transmission from asymptomatic patients, and the specific risks associated with aerosol-generating procedures. Protective measures, such as minimization of aerosols and use of personal protective equipment in the setting of treating asymptomatic patients, are also reviewed. SOURCE: We examined the published literature as well as Societal guidelines. PRINCIPAL FINDINGS: There is evidence that a proportion of those infected with SARS-CoV-2 have detectable viral loads prior to exhibiting symptoms, or without ever developing symptoms. The degree of risk of transmission from asymptomatic patients to healthcare providers will depend on the prevalence of disease in the population, which is difficult to assess without widespread population screening. Aerosol-generating procedures increase the odds of viral transmission from infected symptomatic patients to healthcare providers, but transmission from asymptomatic patients has not been reported. Techniques to minimize aerosolization and appropriate personal protective equipment may help reduce the risk to healthcare workers in the operating room. Some societal guidelines recommend the use of airborne precautions during aerosol-generating procedures on asymptomatic patients during the coronavirus disease pandemic, although evidence supporting this practice is limited. CONCLUSION: Viral transmission from patients exhibiting no symptoms in the operating room is plausible and efforts to reduce risk to healthcare providers include reducing aerosolization and wearing appropriate personal protective equipment, the feasibility of which will vary based on geographic risk and equipment availability.


RéSUMé: OBJECTIF: Le risque encouru par les travailleurs de la santé traitant des patients asymptomatiques infectés par le syndrome respiratoire aigu sévère du coronavirus 2 (SARS-CoV-2) en salle d'opération dépend de plusieurs facteurs. Ce compte rendu examine les données probantes concernant la présence asymptomatique ou pré-symptomatique du SARS-CoV-2, le risque de transmission des patients asymptomatiques, et les risques spécifiques associés aux interventions générant des aérosols. Nous passons également en revue différentes mesures de protection, telles que la minimisation des aérosols et l'utilisation d'équipements de protection individuelle, dans un contexte de traitement de patients asymptomatiques. SOURCE: Nous avons examiné la littérature publiée ainsi que les directives sociétales. CONSTATATIONS PRINCIPALES: Selon certaines données probantes, une proportion des personnes infectées par le SARS-CoV-2 possèdent des charges virales détectables avant la présence de symptômes, voire même sans manifestation de symptômes. Le degré de risque de transmission des patients asymptomatiques aux travailleurs de la santé dépendra de la prévalence de la maladie dans la population, une donnée difficile à évaluer sans dépistage généralisé. Les interventions générant des aérosols augmentent le risque de transmission virale des patients symptomatiques infectés aux travailleurs de la santé, mais la transmission de patients asymptomatiques n'a pas été rapportée. Les techniques visant à minimiser l'aérosolisation et les équipements de protection individuelle adaptés pourraient être utiles pour réduire le risque des travailleurs de la santé en salle d'opération. Certaines directives régionales et nationales recommandent le recours à des précautions contre la transmission par voie aérienne durant les interventions générant des aérosols pratiquées sur des patients asymptomatiques pendant la pandémie de coronavirus, bien que les données probantes appuyant cette pratique soient limitées. CONCLUSION: La transmission virale des patients asymptomatiques en salle d'opération est plausible et les efforts visant à réduire le risque pour les travailleurs de la santé comprennent la réduction de l'aérosolisation et le port d'équipements de protection individuelle adaptés, deux mesures dont la faisabilité variera en fonction du risque géographique et de la disponibilité des équipements.


Subject(s)
Asymptomatic Infections/epidemiology , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pneumonia, Viral/transmission , Aerosols , Betacoronavirus/isolation & purification , COVID-19 , Carrier State/epidemiology , Carrier State/virology , Coronavirus Infections/epidemiology , Health Personnel , Humans , Pandemics , Personal Protective Equipment , Pneumonia, Viral/epidemiology , SARS-CoV-2
19.
Viruses ; 12(6)2020 06 25.
Article in English | MEDLINE | ID: covidwho-1726024

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has highlighted the importance of reliable and rapid diagnostic testing to prevent and control virus circulation. Dozens of monoplex in-house RT-qPCR assays are already available; however, the development of dual-target assays is suited to avoid false-negative results caused by polymorphisms or point mutations, that can compromise the accuracy of diagnostic and screening tests. In this study, two mono-target assays recommended by WHO (E-Sarbeco (enveloppe gene, Charite University, Berlin, Germany) and RdRp-IP4 (RdRp, Institut Pasteur, Paris, France)) were selected and combined in a unique robust test; the resulting duo SARS-CoV-2 RT-qPCR assay was compared to the two parental monoplex tests. The duo SARS-CoV-2 assay performed equally, or better, in terms of sensitivity, specificity, linearity and signal intensity. We demonstrated that combining two single systems into a dual-target assay (with or without an MS2-based internal control) did not impair performances, providing a potent tool adapted for routine molecular diagnosis in clinical microbiology laboratories.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , World Health Organization
20.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726022

ABSTRACT

There is currently debate about human coronavirus (HCoV) seasonality and pathogenicity, as epidemiological data are scarce. Here, we provide epidemiological and clinical features of HCoV patients with acute respiratory infection (ARI) examined in primary care general practice. We also describe HCoV seasonality over six influenza surveillance seasons (week 40 to 15 of each season) from the period 2014/2015 to 2019/2020 in Corsica (France). A sample of patients of all ages presenting for consultation for influenza-like illness (ILI) or ARI was included by physicians of the French Sentinelles Network during this period. Nasopharyngeal samples were tested for the presence of 21 respiratory pathogens by real-time RT-PCR. Among the 1389 ILI/ARI patients, 105 were positive for at least one HCoV (7.5%). On an annual basis, HCoVs circulated from week 48 (November) to weeks 14-15 (May) and peaked in week 6 (February). Overall, among the HCoV-positive patients detected in this study, HCoV-OC43 was the most commonly detected virus, followed by HCoV-NL63, HCoV-HKU1, and HCoV-229E. The HCoV detection rates varied significantly with age (p = 0.00005), with the age group 0-14 years accounting for 28.6% (n = 30) of HCoV-positive patients. Fever and malaise were less frequent in HCoV patients than in influenza patients, while sore throat, dyspnoea, rhinorrhoea, and conjunctivitis were more associated with HCoV positivity. In conclusion, this study demonstrates that HCoV subtypes appear in ARI/ILI patients seen in general practice, with characteristic outbreak patterns primarily in winter. This study also identified symptoms associated with HCoVs in patients with ARI/ILI. Further studies with representative samples should be conducted to provide additional insights into the epidemiology and clinical features of HCoVs.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Male , Middle Aged , Nasopharynx/virology , Primary Health Care , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2 , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL