Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.341
Filter
Add filters

Year range
1.
Cells ; 10(2)2021 02 02.
Article in English | MEDLINE | ID: covidwho-1060037

ABSTRACT

Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus-host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Viral Nonstructural Proteins/physiology , Animals , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Gene Expression Regulation , Host Microbial Interactions , Humans , Mice , RNA, Messenger/genetics , Virus Replication
3.
PLoS One ; 15(9): e0239113, 2020.
Article in English | MEDLINE | ID: covidwho-798750

ABSTRACT

Social distancing interventions can be effective against epidemics but are potentially detrimental for the economy. Businesses that rely heavily on face-to-face communication or close physical proximity when producing a product or providing a service are particularly vulnerable. There is, however, no systematic evidence about the role of human interactions across different lines of business and about which will be the most limited by social distancing. Here we provide theory-based measures of the reliance of U.S. businesses on human interaction, detailed by industry and geographic location. We find that, before the pandemic hit, 43 million workers worked in occupations that rely heavily on face-to-face communication or require close physical proximity to other workers. Many of these workers lost their jobs since. Consistently with our model, employment losses have been largest in sectors that rely heavily on customer contact and where these contacts dropped the most: retail, hotels and restaurants, arts and entertainment and schools. Our results can help quantify the economic costs of social distancing.


Subject(s)
Commerce/trends , Coronavirus Infections/prevention & control , Employment/trends , Infection Control/economics , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/pathogenicity , Commerce/standards , Commerce/statistics & numerical data , Coronavirus Infections/economics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Datasets as Topic , Employment/economics , Employment/statistics & numerical data , Humans , Infection Control/methods , Infection Control/standards , Pandemics/economics , Pneumonia, Viral/economics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , United States
4.
Cytometry A ; 97(9): 882-886, 2020 09.
Article in English | MEDLINE | ID: covidwho-790373

ABSTRACT

Operating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff. Here, we describe the resulting guidelines and explain their rationale, with a focus on separating users in space and time, protective face masks, and keeping surfaces virus-free. These recommendations may prove useful for other types of SRLs. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/pathogenicity , Biomedical Research/organization & administration , Coronavirus Infections/prevention & control , Infection Control , Laboratories/organization & administration , Microscopy , Occupational Health , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Cooperative Behavior , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination , Equipment Contamination/prevention & control , Germany , Humans , Occupational Exposure/prevention & control , Personal Protective Equipment , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protective Factors , Research Personnel/organization & administration , Risk Assessment , Risk Factors , Workflow
6.
Nat Biotechnol ; 38(9): 1073-1078, 2020 09.
Article in English | MEDLINE | ID: covidwho-1023948

ABSTRACT

A robust serological test to detect neutralizing antibodies to SARS-CoV-2 is urgently needed to determine not only the infection rate, herd immunity and predicted humoral protection, but also vaccine efficacy during clinical trials and after large-scale vaccination. The current gold standard is the conventional virus neutralization test requiring live pathogen and a biosafety level 3 laboratory. Here, we report a SARS-CoV-2 surrogate virus neutralization test that detects total immunodominant neutralizing antibodies targeting the viral spike (S) protein receptor-binding domain in an isotype- and species-independent manner. Our simple and rapid test is based on antibody-mediated blockage of the interaction between the angiotensin-converting enzyme 2 (ACE2) receptor protein and the receptor-binding domain. The test, which has been validated with two cohorts of patients with COVID-19 in two different countries, achieves 99.93% specificity and 95-100% sensitivity, and differentiates antibody responses to several human coronaviruses. The surrogate virus neutralization test does not require biosafety level 3 containment, making it broadly accessible to the wider community for both research and clinical applications.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies/immunology , Antibodies/pharmacology , Betacoronavirus/genetics , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Neutralization Tests , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Interaction Domains and Motifs/genetics , Spike Glycoprotein, Coronavirus/chemistry
12.
J Gastrointestin Liver Dis ; 29(3): 473-475, 2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-1005155
15.
Arch Immunol Ther Exp (Warsz) ; 68(6): 35, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-983490

ABSTRACT

The COVID-19 pandemic developing rapidly in 2020 is triggered by the emergence of a new human virus-SARS-CoV-2. The emergence of a new virus is not an unexpected phenomenon and has been predicted for many years. Since the virus has spread all over the world, it will be very difficult or even impossible to eradicate it. A necessary condition for complete or partial elimination of the virus is to have an effective vaccine. It is possible that SARS-CoV-2 will become milder in the next few years and COVID-19 will then only threaten individuals from risk groups.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Animals , Betacoronavirus/pathogenicity , Biological Evolution , Communicable Disease Control/organization & administration , Communicable Diseases, Emerging , Coronaviridae/genetics , Coronaviridae/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Disease Eradication , Disease Susceptibility , Forecasting , Host Specificity , Humans , Pandemics/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Selection, Genetic , Virulence , Zoonoses
16.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Symbiosis/immunology
17.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983187

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
19.
Cancer Discov ; 10(10): 1514-1527, 2020 10.
Article in English | MEDLINE | ID: covidwho-981743

ABSTRACT

Among 2,186 U.S. adults with invasive cancer and laboratory-confirmed SARS-CoV-2 infection, we examined the association of COVID-19 treatments with 30-day all-cause mortality and factors associated with treatment. Logistic regression with multiple adjustments (e.g., comorbidities, cancer status, baseline COVID-19 severity) was performed. Hydroxychloroquine with any other drug was associated with increased mortality versus treatment with any COVID-19 treatment other than hydroxychloroquine or untreated controls; this association was not present with hydroxychloroquine alone. Remdesivir had numerically reduced mortality versus untreated controls that did not reach statistical significance. Baseline COVID-19 severity was strongly associated with receipt of any treatment. Black patients were approximately half as likely to receive remdesivir as white patients. Although observational studies can be limited by potential unmeasured confounding, our findings add to the emerging understanding of patterns of care for patients with cancer and COVID-19 and support evaluation of emerging treatments through inclusive prospective controlled trials. SIGNIFICANCE: Evaluating the potential role of COVID-19 treatments in patients with cancer in a large observational study, there was no statistically significant 30-day all-cause mortality benefit with hydroxychloroquine or high-dose corticosteroids alone or in combination; remdesivir showed potential benefit. Treatment receipt reflects clinical decision-making and suggests disparities in medication access.This article is highlighted in the In This Issue feature, p. 1426.


Subject(s)
Coronavirus Infections/drug therapy , Drug Utilization/statistics & numerical data , Healthcare Disparities/statistics & numerical data , Neoplasms/mortality , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Age Factors , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Betacoronavirus/pathogenicity , Clinical Decision-Making , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Drug Therapy, Combination/methods , Drug Therapy, Combination/statistics & numerical data , Follow-Up Studies , Glucocorticoids/therapeutic use , Hospital Mortality , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Neoplasms/complications , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Risk Factors , Severity of Illness Index , Sex Factors , Treatment Outcome , United States/epidemiology
20.
Nature ; 584(7821): 430-436, 2020 08.
Article in English | MEDLINE | ID: covidwho-981546

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly affected mortality worldwide1. There is unprecedented urgency to understand who is most at risk of severe outcomes, and this requires new approaches for the timely analysis of large datasets. Working on behalf of NHS England, we created OpenSAFELY-a secure health analytics platform that covers 40% of all patients in England and holds patient data within the existing data centre of a major vendor of primary care electronic health records. Here we used OpenSAFELY to examine factors associated with COVID-19-related death. Primary care records of 17,278,392 adults were pseudonymously linked to 10,926 COVID-19-related deaths. COVID-19-related death was associated with: being male (hazard ratio (HR) 1.59 (95% confidence interval 1.53-1.65)); greater age and deprivation (both with a strong gradient); diabetes; severe asthma; and various other medical conditions. Compared with people of white ethnicity, Black and South Asian people were at higher risk, even after adjustment for other factors (HR 1.48 (1.29-1.69) and 1.45 (1.32-1.58), respectively). We have quantified a range of clinical factors associated with COVID-19-related death in one of the largest cohort studies on this topic so far. More patient records are rapidly being added to OpenSAFELY, we will update and extend our results regularly.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , African Continental Ancestry Group/statistics & numerical data , Age Distribution , Age Factors , Aged , Aged, 80 and over , Aging , Asian Continental Ancestry Group/statistics & numerical data , Asthma/epidemiology , Cohort Studies , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Diabetes Mellitus/epidemiology , Female , Humans , Hypertension/epidemiology , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Proportional Hazards Models , Risk Assessment , Sex Characteristics , Smoking/epidemiology , State Medicine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL