Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
2.
ACS Nano ; 14(8): 9364-9388, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-1387150

ABSTRACT

The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/therapy , Nanostructures/therapeutic use , Pandemics , Pneumonia, Viral/therapy , Adaptive Immunity , Betacoronavirus/drug effects , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Delivery Systems , Fullerenes/therapeutic use , Host Microbial Interactions/drug effects , Humans , Immunity, Innate , Metal Nanoparticles/therapeutic use , Models, Biological , Nanotechnology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Reactive Oxygen Species/therapeutic use , SARS-CoV-2 , Virus Internalization/drug effects
3.
ACS Nano ; 14(6): 7651-7658, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-1387149

ABSTRACT

Layered systems of commonly available fabric materials can be used by the public and healthcare providers in face masks to reduce the risk of inhaling viruses with protection that is about equivalent to or better than the filtration and adsorption offered by 5-layer N95 respirators. Over 70 different common fabric combinations and masks were evaluated under steady-state, forced convection air flux with pulsed aerosols that simulate forceful respiration. The aerosols contain fluorescent virus-like nanoparticles to track transmission through materials that greatly assist the accuracy of detection, thus avoiding artifacts including pore flooding and the loss of aerosol due to evaporation and droplet breakup. Effective materials comprise both absorbent, hydrophilic layers and barrier, hydrophobic layers. Although the hydrophobic layers can adhere virus-like nanoparticles, they may also repel droplets from adjacent absorbent layers and prevent wicking transport across the fabric system. Effective designs are noted with absorbent layers comprising terry cloth towel, quilting cotton, and flannel. Effective designs are noted with barrier layers comprising nonwoven polypropylene, polyester, and polyaramid.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles , Aerosols , Air Microbiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/transmission , Filtration , Humans , In Vitro Techniques , Masks/supply & distribution , Nanoparticles/ultrastructure , Particle Size , Permeability , Pneumonia, Viral/transmission , SARS-CoV-2 , Water
4.
Biomedica ; 40(Supl. 2): 148-158, 2020 10 30.
Article in English, Spanish | MEDLINE | ID: covidwho-916545

ABSTRACT

Introduction: SARS-CoV-2 has been identified as the new coronavirus causing an outbreak of acute respiratory disease in China in December, 2019. This disease, currently named COVID-19, has been declared as a pandemic by the World Health Organization (WHO). The first case of COVID-19 in Colombia was reported on March 6, 2020. Here we characterize an early SARS-CoV-2 isolate from the pandemic recovered in April, 2020. Objective: To describe the isolation and characterization of an early SARS-CoV-2 isolate from the epidemic in Colombia. Materials and methods: A nasopharyngeal specimen from a COVID-19 positive patient was inoculated on different cell lines. To confirm the presence of SARS-CoV-2 on cultures we used qRT-PCR, indirect immunofluorescence assay, transmission and scanning electron microscopy, and next-generation sequencing. Results: We determined the isolation of SARS-CoV-2 in Vero-E6 cells by the appearance of the cytopathic effect three days post-infection and confirmed it by the positive results in the qRT-PCR and the immunofluorescence with convalescent serum. Transmission and scanning electron microscopy images obtained from infected cells showed the presence of structures compatible with SARS-CoV-2. Finally, a complete genome sequence obtained by next-generation sequencing allowed classifying the isolate as B.1.5 lineage. Conclusion: The evidence presented in this article confirms the first isolation of SARSCoV-2 in Colombia. In addition, it shows that this strain behaves in cell culture in a similar way to that reported in the literature for other isolates and that its genetic composition is consistent with the predominant variant in the world. Finally, points out the importance of viral isolation for the detection of neutralizing antibodies, for the genotypic and phenotypic characterization of the strain and for testing compounds with antiviral potential.


Introducción. El nuevo coronavirus causante de un brote de enfermedad respiratoria aguda en China en diciembre de 2019 se identificó como SARS-CoV-2. La enfermedad, denominada COVID-19, fue declarada pandemia por la Organización Mundial de la Salud (OMS). El primer caso de COVID-19 en Colombia se reportó el 6 de marzo de 2020; en este estudio se caracterizó un aislamiento temprano del virus SARS-CoV-2 de una muestra ecolectada en abril de 2020. Objetivos. Describir y caracterizar una cepa temprana a partir de un aislamiento de SARSCoV-2 durante la pandemia en Colombia. Materiales y métodos. Se obtuvo una muestra de un paciente con COVID-19 confirmada por qRT-PCR; la muestra fue inoculada en diferentes líneas celulares hasta la aparición del efecto citopático. Para confirmar la presencia de SARS-CoV-2 en el cultivo, se utilizó la qRT-PCR a partir de los sobrenadantes, la inmunofluorescencia indirecta (IFI) en células Vero-E6, así como microscopía electrónica y secuenciación de nueva generación (nextgeneration sequencing). Resultados. Se confirmó el aislamiento de SARS-CoV-2 en células Vero-E6 por la aparición del efecto citopático tres días después de la infección, así como mediante la qRT-PCR y la IFI positiva con suero de paciente convaleciente positivo para SARS-CoV-2. Además, en las imágenes de microscopía electrónica de trasmisión y de barrido de células infectadas se observaron estructuras compatibles con viriones de SARS-CoV-2. Por último, se obtuvo la secuencia completa del genoma, lo que permitió clasificar el aislamiento como linaje B.1.5. Conclusiones. La evidencia presentada en este artículo permite confirmar el primer aislamiento de SARS-CoV-2 en Colombia. Además, muestra que esta cepa se comporta en cultivo celular de manera similar a lo reportado en la literatura para otros aislamientos y que su composición genética está acorde con la variante predominante en el mundo. Finalmente, se resalta la importancia que tiene el aislamiento viral para la detección de anticuerpos, para la caracterización genotípica y fenotípica de la cepa y para probar compuestos con potencial antiviral.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/virology , RNA, Viral/genetics , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , Chlorocebus aethiops , Colombia/epidemiology , Convalescence , Coronavirus Infections/epidemiology , Cytopathogenic Effect, Viral , Fluorescent Antibody Technique, Indirect , Genome, Viral , Humans , Microscopy, Electron , Molecular Typing , Nasopharynx/virology , Pneumonia, Viral/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis, RNA , Species Specificity , Vero Cells , Virion/ultrastructure , Virus Cultivation
5.
Niger J Physiol Sci ; 35(1): 10-19, 2020 06 30.
Article in English | MEDLINE | ID: covidwho-882015

ABSTRACT

Coronavirus Disease 2019 is a wide-spreading severe viral disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) virus that needs to be urgently eradicated. SARS-COV-2 has infected millions of people worldwide and results in more than three hundred thousand deaths. Several repurposed drugs have failed to successfully eradicate the infection. Multiorgan failure caused by pronounced inflammation and systemic coagulation accounts for severe complications and death associated with diseases. Bromelain appears to be a potential candidate that may be used to inhibit or prevent the symptoms of the diseases. Its anti-inflammatory and anticoagulatory properties make it a potential agent that may slow the progression of the disease. In this review, we highlighted the beneficial effects of bromelain based on both experimental and clinical evidence that make bromelain a good candidate for the treatment of symptoms of CoVID-19 infection.


Subject(s)
Bromelains/therapeutic use , Coronavirus Infections/drug therapy , Phytotherapy , Pneumonia, Viral/drug therapy , Ananas , Betacoronavirus/ultrastructure , Bromelains/pharmacology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions , Humans , Pandemics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
6.
Niger J Physiol Sci ; 35(1): 20-25, 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-881765

ABSTRACT

Severe Acute Respiratory human Coronavirus 2 (SARS-hCOV 2) infection which began in December 2019 has rapidly disseminated worldwide due to non-availability of anti-viral treatment or vaccine, no knowledge of virus-human interaction, lack of prognostic factors for stages of illness and ability of hCoV 2 to rapidly mutate and infect multiple cell types. Host inflammation and evasion of host immune responses by viruses are believed to play major roles in disease severity of human Corona viruses (hCoVs), thus uses of anti-inflammatory and immune-boosting agents apart from complete multi-disciplinary approach are suggested to combat the ranvaging SAR-hCOV 2 infection. This paper related the structural proteins and life cycle of CoV with host immune responses to CoV. This is to bring out gaps in knowledge for possible future researches.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Pneumonia, Viral/immunology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Structural Proteins/physiology
7.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-872505

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Subject(s)
Betacoronavirus/ultrastructure , Disinfectants/pharmacology , Propiolactone/pharmacology , Virion/drug effects , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology , Virion/ultrastructure
8.
Pharmacol Res ; 156: 104761, 2020 06.
Article in English | MEDLINE | ID: covidwho-830796

ABSTRACT

PURPOSE: Lianhuaqingwen (LH) as traditional Chinese medicine (TCM) formula has been used to treat influenza and exerted broad-spectrum antiviral effects on a series of influenza viruses and immune regulatory effects Ding et al. (2017). The goal of this study is to demonstrate the antiviral activity of LH against the novel SARS-CoV-2 virus and its potential effect in regulating host immune response. METHODS: The antiviral activity of LH against SARS-CoV-2 was assessed in Vero E6 cells using CPE and plaque reduction assay. The effect of LH on virion morphology was visualized under transmission electron microscope. Pro-inflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. RESULTS: LH significantly inhibited SARS-CoV-2 replication in Vero E6 cells and markedly reduced pro-inflammatory cytokines (TNF-α, IL-6, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Furthermore, LH treatment resulted in abnormal particle morphology of virion in cells. CONCLUSIONS: LH significantly inhibits the SARS-COV-2 replication, affects virus morphology and exerts anti-inflammatory activity in vitro. These findings indicate that LH protects against the virus attack, making its use a novel strategy for controlling the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , Animals , Betacoronavirus/ultrastructure , Cell Line , Chlorocebus aethiops , Microscopy, Electrochemical, Scanning , SARS-CoV-2
9.
Sci Rep ; 10(1): 16099, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-809222

ABSTRACT

SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Here, we investigated the interaction of this new coronavirus with Vero cells using high resolution scanning electron microscopy. Surface morphology, the interior of infected cells and the distribution of viral particles in both environments were observed 2 and 48 h after infection. We showed areas of viral processing, details of vacuole contents, and viral interactions with the cell surface. Intercellular connections were also approached, and viral particles were adhered to these extensions suggesting direct cell-to-cell transmission of SARS-CoV-2.


Subject(s)
Betacoronavirus/ultrastructure , Coronavirus Infections/transmission , Host-Pathogen Interactions/physiology , Pneumonia, Viral/transmission , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Humans , Microscopy, Electron, Scanning , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2 , Vero Cells
10.
Nano Lett ; 20(10): 7642-7647, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-801587

ABSTRACT

Shortages in the availability of personal protective face masks during the COVID-19 pandemic required many to fabricate masks and filter inserts from available materials. While the base filtration efficiency of a material is of primary importance when a perfect seal is possible, ideal fit is not likely to be achieved by the average person preparing to enter a public space or even a healthcare worker without fit-testing before each shift. Our findings suggest that parameters including permeability and pliability can play a strong role in the filtration efficiency of a mask fabricated with various filter media, and that the filtration efficiency of loosely fitting masks/respirators against ultrafine particulates can drop by more than 60% when worn compared to the ideal filtration efficiency of the base material. Further, a test method using SARS-CoV-2 virion-sized silica nanoaerosols is demonstrated to assess the filtration efficiency against nanoparticulates that follow air currents associated with mask leakage.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Filtration/instrumentation , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices , Textiles , Aerosols , Air Microbiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cotton Fiber , Filtration/statistics & numerical data , Humans , Inhalation Exposure , Nanoparticles , Particle Size , Permeability , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Silicon Dioxide
11.
Curr Top Med Chem ; 20(26): 2362-2378, 2020.
Article in English | MEDLINE | ID: covidwho-789061

ABSTRACT

The article highlights an up-to-date progress in studies on structural and the remedial aspects of novel coronavirus 2019-nCoV, renamed as SARS-CoV-2, leading to the disease COVID-19, a pandemic. In general, all CoVs including SARS-CoV-2 are spherical positive single-stranded RNA viruses containing spike (S) protein, envelope (E) protein, nucleocapsid (N) protein, and membrane (M) protein, where S protein has a Receptor-binding Domain (RBD) that mediates the binding to host cell receptor, Angiotensin Converting Enzyme 2 (ACE2). The article details the repurposing of some drugs to be tried for COVID-19 and presents the status of vaccine development so far. Besides drugs and vaccines, the role of Convalescent Plasma (CP) therapy to treat COVID-19 is also discussed.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Betacoronavirus/ultrastructure , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Gene Expression , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive/methods , Ivermectin/therapeutic use , Models, Molecular , Niclosamide/therapeutic use , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Protein Interaction Domains and Motifs/drug effects , Protein Structure, Secondary , SARS Virus/drug effects , SARS Virus/immunology , SARS Virus/pathogenicity , SARS Virus/ultrastructure , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/biosynthesis
12.
Nano Lett ; 20(7): 5367-5375, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-628240

ABSTRACT

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.


Subject(s)
Betacoronavirus/ultrastructure , Coronavirus Infections/virology , Nanostructures/ultrastructure , Pneumonia, Viral/virology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Drug Design , Humans , Influenza A virus/drug effects , Influenza A virus/ultrastructure , Microscopy, Electron , Models, Biological , Nanotechnology , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/ultrastructure , Virus Internalization/drug effects
13.
Cell ; 183(3): 739-751.e8, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-758650

ABSTRACT

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Spike Glycoprotein, Coronavirus/physiology , Spike Glycoprotein, Coronavirus/ultrastructure , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cells, Cultured , Coronavirus Infections/virology , Female , Genetic Variation , HEK293 Cells , Humans , Male , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Conformation , Protein Processing, Post-Translational , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Species Specificity
14.
Cell ; 183(3): 730-738.e13, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-746087

ABSTRACT

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Virus Assembly , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , Mass Spectrometry , Models, Molecular , Protein Conformation , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virus Cultivation
15.
Adv Healthc Mater ; 9(19): e2000979, 2020 10.
Article in English | MEDLINE | ID: covidwho-743611

ABSTRACT

Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.


Subject(s)
Betacoronavirus , Coronavirus Infections , Nanotechnology/methods , Pandemics , Pneumonia, Viral , Antiviral Agents/administration & dosage , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Disinfection/methods , Humans , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanostructures/chemistry , Nanotechnology/legislation & jurisprudence , Pandemics/prevention & control , Patents as Topic , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Surface Properties , Viral Vaccines/administration & dosage
16.
J Fr Ophtalmol ; 43(7): 642-652, 2020 Sep.
Article in French | MEDLINE | ID: covidwho-741338

ABSTRACT

The COVID-19 pandemic has dramatically changed our daily lives as ophthalmologists. This general review firstly provides a better understanding of the virus responsible for the pandemic: the SARS-CoV-2, and the clinical manifestations of the COVID-19 disease. The second part is detailing the pathophysiology, clinical signs and challenges of ocular involvement, which seems rare and not functionally severe, but which may be a potential source of contamination. Finally, we discuss the preventive measures that need to be implemented in our daily practice to avoid any viral dissemination.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Eye Infections, Viral/virology , Pneumonia, Viral/complications , Betacoronavirus/genetics , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/prevention & control , Diagnostic Techniques, Ophthalmological , Eye/virology , Eye Infections, Viral/physiopathology , Eye Infections, Viral/prevention & control , Genome, Viral , Humans , Microscopy, Electron , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Virus Integration
17.
Cell ; 182(6): 1560-1573.e13, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-710427

ABSTRACT

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.


Subject(s)
Methyltransferases/chemistry , RNA Helicases/chemistry , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Virus Replication , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Betacoronavirus/genetics , Betacoronavirus/metabolism , Betacoronavirus/ultrastructure , Binding Sites , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Holoenzymes/chemistry , Holoenzymes/metabolism , Magnesium/metabolism , Methyltransferases/metabolism , Protein Binding , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
19.
Eur Rev Med Pharmacol Sci ; 24(9): 5186-5188, 2020 05.
Article in English | MEDLINE | ID: covidwho-687446

ABSTRACT

From two COVID-19-related deaths, samples of lung, heart and kidney were collected and processed for Transmission and Scanning Electron Microscopy (TEM and SEM) with the aim of identifying the virus. Virions of SARS-CoV-2 were found in all tissues by TEM and SEM, corroborating the hypothesis that the virus enters the cells of different organs. This is the first report identifying SARS-CoV-2 in different human tissues by TEM and SEM.


Subject(s)
Betacoronavirus/isolation & purification , Betacoronavirus/ultrastructure , Coronavirus Infections/virology , Heart/virology , Kidney/virology , Lung/virology , Pneumonia, Viral/virology , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/pathology , Female , Humans , Kidney/pathology , Lung/pathology , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...