Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
2.
EMBO Rep ; 23(2): e53973, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1780310

ABSTRACT

The upcoming UN Biodiversity Conference should address shortfalls of Access and Benefit Sharing systems inspired by the Nagoya Protocol to help improve sustainable use of biodiversity and equitable benefit sharing.


Subject(s)
Biodiversity , Conservation of Natural Resources
6.
Eur Heart J Qual Care Clin Outcomes ; 7(6): 521-523, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1665955
7.
Parasit Vectors ; 15(1): 23, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1627901

ABSTRACT

BACKGROUND: Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS: To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS: A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS: Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.


Subject(s)
Brazil , Culicidae , Disease Outbreaks , Mosquito Vectors , Yellow Fever/transmission , Aedes/growth & development , Aedes/virology , Animals , Biodiversity , Brazil/epidemiology , Climate , Culicidae/growth & development , Culicidae/virology , Forests , Humans , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Risk Factors , Yellow Fever/epidemiology
10.
Lancet Planet Health ; 5(11): e840-e850, 2021 11.
Article in English | MEDLINE | ID: covidwho-1595200

ABSTRACT

The ongoing COVID-19 pandemic, caused by zoonotic SARS-CoV-2, has important links to biodiversity loss and ecosystem health. These links range from anthropogenic activities driving zoonotic disease emergence and extend to the pandemic affecting biodiversity conservation, environmental policy, ecosystem services, and multiple conservation facets. Crucially, such effects can exacerbate the initial drivers, resulting in feedback loops that are likely to promote future zoonotic disease outbreaks. We explore these feedback loops and relationships, highlighting known and potential zoonotic disease emergence drivers (eg, land-use change, intensive livestock production, wildlife trade, and climate change), and discuss direct and indirect effects of the ongoing pandemic on biodiversity loss and ecosystem health. We stress that responses to COVID-19 must include actions aimed at safeguarding biodiversity and ecosystems, in order to avoid future emergence of zoonoses and prevent their wide-ranging effects on human health, economies, and society. Such responses would benefit from adopting a One Health approach, enhancing cross-sector, transboundary communication, as well as from collaboration among multiple actors, promoting planetary and human health.


Subject(s)
COVID-19 , Ecosystem , Pandemics , Animals , Biodiversity , COVID-19/epidemiology , Humans
14.
Front Public Health ; 9: 740187, 2021.
Article in English | MEDLINE | ID: covidwho-1556323

ABSTRACT

The COVID-19 pandemic has led to tremendous impacts on human lives and society, which are not only because of negative effects on people's mental health due to isolation policies and physical distance for mitigating the spread of SARS-CoV-2, but also because the incident post-acute sequelae of the coronavirus will cause mental disorders. A green environment is a health resource, which cannot only benefit human physical and mental health, but also increases biodiversity, contributes to flood mitigation, and cools urban areas. A home garden, as a kind of small green space, can provide ecosystem services with eco-healing functions in reducing mental stress during the isolation period of the COVID-19 pandemic through the garden itself and physical activities in it. Such an eco-healing approach within a mini-therapeutic landscape can also benefit biodiversity by enhancing plant diversity in residence and increasing biodiversity at a large scale. In this article, we propose a conceptual framework describing a home garden as "ecological medicine" with healing functions to improve mental health, as well as indirectly enhancing urban biodiversity. A home garden, as a mini-type of green landscape with biodiversity content, allows people to get close with nature so that it can promote comfortable and natural feelings during the pandemic. Furthermore, such an eco-healing home garden approach benefiting urban biodiversity can meet the challenges in maintaining environmental and mental health in post COVID-19 pandemic recovery, as well as preparing unknown next-surge risks with potential isolation regulations.


Subject(s)
COVID-19 , Pandemics , Biodiversity , Ecosystem , Gardens , Humans , Mental Health , Pandemics/prevention & control , SARS-CoV-2
17.
J Paediatr Child Health ; 57(11): 1811-1818, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1537844

ABSTRACT

The reality of climate change and biodiversity collapse is irrefutable in the 21st century, with urgent action required not only to conserve threatened species but also to protect human life and wellbeing. This existential threat forces us to recognise that our existence is completely dependent upon well-functioning ecosystems that sustain the diversity of life on our planet, including that required for human health. By synthesising data on the ecology, epidemiology and evolutionary biology of various pathogens, we are gaining a better understanding of factors that underlie disease emergence and spread. However, our knowledge remains rudimentary with limited insight into the complex feedback loops that underlie ecological stability, which are at risk of rapidly unravelling once certain tipping points are breached. In this paper, we consider the impact of climate change and biodiversity collapse on the ever-present risk of infectious disease emergence and spread. We review historical and contemporaneous infectious diseases that have been influenced by human environmental manipulation, including zoonoses and vector- and water-borne diseases, alongside an evaluation of the impact of migration, urbanisation and human density on transmissible diseases. The current lack of urgency in political commitment to address climate change warrants enhanced understanding and action from paediatricians - to ensure that we safeguard the health and wellbeing of children in our care today, as well as those of future generations.


Subject(s)
Communicable Diseases, Emerging , Communicable Diseases , Animals , Biodiversity , Child , Climate Change , Communicable Diseases/epidemiology , Ecosystem , Humans
18.
Viruses ; 13(11)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1526862

ABSTRACT

Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.


Subject(s)
Microalgae/virology , Phylogeny , Ponds , RNA Viruses/classification , Water Microbiology , Animals , Biodiversity , Biomass , Metagenome , Pilot Projects , RNA Viruses/genetics , Rotifera/virology , Seasons , Water
20.
Nat Commun ; 12(1): 6492, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1514412

ABSTRACT

The COVID-19 pandemic caused unprecedented cancellations of fisheries and ecosystem-assessment surveys, resulting in a recession of observations needed for management and conservation globally. This unavoidable reduction of survey data poses challenges for informing biodiversity and ecosystem functioning, developing future stock assessments of harvested species, and providing strategic advice for ecosystem-based management. We present a diversified framework involving integration of monitoring data with empirical models and simulations to inform ecosystem status within the California Current Large Marine Ecosystem. We augment trawl observations collected from a limited fisheries survey with survey effort reduction simulations, use of seabird diets as indicators of fish abundance, and krill species distribution modeling trained on past observations. This diversified approach allows for evaluation of ecosystem status during data-poor situations, especially during the COVID-19 era. The challenges to ecosystem monitoring imposed by the pandemic may be overcome by preparing for unexpected effort reduction, linking disparate ecosystem indicators, and applying new species modeling techniques.


Subject(s)
COVID-19/epidemiology , Conservation of Natural Resources/methods , Fisheries/statistics & numerical data , SARS-CoV-2/pathogenicity , Animals , Biodiversity , COVID-19/transmission , COVID-19/virology , Databases, Factual , Ecosystem , Environmental Monitoring/methods , Fishes , Food Chain , Models, Statistical , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL